
OR Spectrum
DOI 10.1007/s00291-010-0194-3

REGULAR ARTICLE

Vehicle routing with compartments: applications,
modelling and heuristics

Ulrich Derigs · Jens Gottlieb · Jochen Kalkoff ·
Michael Piesche · Franz Rothlauf · Ulrich Vogel

© Springer-Verlag 2010

Abstract Despite the vast amount of literature about vehicle routing problems, only
very little attention has been paid to vehicles with compartments that allow transpor-
tation of inhomogeneous products on the same vehicle, but in different compartments.
We motivate a general vehicle routing problem with compartments that is essential
for several industries, like the distribution of food or petrol. We introduce a formal
model, an integer program formulation and a benchmark suite of 200 instances. A
solver suite of heuristic components is presented, which covers a broad range of
alternative approaches for construction, local search, large neighbourhood search and
meta-heuristics. The empirical results for the benchmark instances identify effective
algorithmic setups as well as essential components for achieving high solution quality.
In a comparison on 23 specific and combinatorially less complex instances taken from
literature, our algorithm showed to be competitive.

Keywords Transportation · Vehicle routing · Compartment · Heuristics

U. Derigs (B) · M. Piesche · U. Vogel
Universität zu Köln, Pohligstr. 1, 50969 Köln, Germany
e-mail: ulrich.derigs@uni-koeln.de

M. Piesche
e-mail: michael.piesche@uni-koeln.de; michael.piesche@googlemail.com

U. Vogel
e-mail: ulrich.vogel@uni-koeln.de

J. Gottlieb
SAP AG, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany
e-mail: jens.gottlieb@sap.com

J. Kalkoff
SAP Deutschland AG & Co. KG, Hasso-Plattner-Ring 7, 69190 Walldorf, Germany
e-mail: jochen.kalkoff@sap.com

F. Rothlauf
Universität Mainz, Jakob-Welder-Weg 9, 55128 Mainz, Germany
e-mail: rothlauf@uni-mainz.de

123

U. Derigs et al.

1 Introduction

The classical capacitated vehicle routing problem considers a set of customers, each
having a certain demand, and a set of vehicles that have the same capacity and are
based at a single central depot. A tour is a sequence of customers assigned to one vehi-
cle. The objective is to determine a set of tours that respect all capacity constraints,
serve all customers and minimize total distance travelled by the vehicles.

In several industries, all delivered goods are homogeneous in the sense that they can
be transported together. However, in other industries the goods are inhomogeneous. To
save transportation costs, those industries often employ vehicles with compartments
in order to allow transporting inhomogeneous goods together on the same vehicle,
but in different compartments. In addition to the vehicle capacity, each compartment
in the vehicle has its own capacity restriction. The compartment setup of a vehicle
may be configurable. In some applications, the separators between the compartments
can be adjusted, such that a single compartment could cover any volume up to the
total volume of the vehicle. In contrast to these flexible compartments, other scenarios
consider fixed compartments that cannot be configured. We introduce the vehicle rout-
ing problem with compartments (VRPC), which covers these significantly different
problem structures.

While many extensions of the classical vehicle routing problem (VRP) were stud-
ied extensively in the literature like time windows, distance constraints, backhauls
or variants involving pickups and deliveries (cf. Toth and Vigo 2002) leading to the
research area termed as rich vehicle routing problems, published research regarding
compartments is quite rare.

Most of the published papers concern fuel distribution, i.e. the compartments are
tanks which can receive different fuel types. Brown and Graves (1981) developed a
real-time computer system for centralized control of distribution of light petroleum
products for a major US Oil Corporation. Van der Bruggen et al. (1995) reported on a
study for a large oil company where the proper assignment of products to truck com-
partments was only one subproblem in a hierarchy of redesign problems. A special
aspect was here to analyse the effect of allowing switch loading, i.e. not to assign
a fixed product to every compartment. Avella et al. (2004) discussed a multi-period
routing problem where each compartment (tank) has to travel either completely full or
empty. For solving the resulting packing and routing problem, they proposed a simple
greedy-like heuristic and a set partitioning-based exact method. Cornillier et al. (2008)
developed heuristic approaches for solving the multi-period petrol station replenish-
ment problem, considering trucks with different compartments.

Fagerholt and Christiansen (2000) introduced a bulk ship scheduling problem where
each ship in the fleet is equipped with a flexible cargo hold that can be partitioned into
several smaller holds in a given number of ways. Jetlund and Karimi (2004) discussed
ship scheduling problems for chemical tankers with compartments and proposed a
solution approach based on integer programming for a simplified model in which the
assignment of cargos to compartments is ignored. Recently, El Fallahi et al. (2008)
studied the special problem type where every compartment is dedicated to one product,
a scenario which arises in the distribution of cattle food to farms. They presented a me-
metic algorithm and a tabu search heuristic and evaluated the algorithms on classical

123

Vehicle routing with compartments

VRP instances from the literature that were modified by adding compartments. Muyl-
dermans and Pang (2007) analysed the improvement of using multiple compartments
over single compartments in waste collection, applying a guided local search algorithm
for solving the specific routing problems, and Chajakis and Guignard (2003) discussed
optimization models for cargo space layout when using multiple compartments.

Our research has been motivated by a demand for methods and software handling
compartments from two industries: the distribution of petrol and food. The distribution
of petrol typically involves different fuel types and vehicles with five compartments.
Thus, a single petrol station demanding several different fuel types can be served by
one vehicle with several compartments. Each compartment can carry any product, but
different products must not be mixed in one compartment.

In food retail, transportation involves frozen and dry goods which need special
equipment for fresh delivery. Typical vehicles have two compartments, one served by
a refrigerator and one for dry goods. This allows serving stores that demand frozen and
dry goods at the same time by one vehicle with two compartments. In this industry,
certain product-compartment combinations are infeasible.

Many heuristic solution methods for vehicle routing problems have been proposed
in the literature. Cordeau et al. (2002, 2005) presented a comprehensive computational
study on state-of-the-art VRP heuristics. Most VRP methods are using some general
(meta-)heuristic strategy to control some kind of a problem-specific neighbourhood
search. While for (simple) vehicle routing problems classical local search (LS) based
on small moves which alter the current solution to a small degree has shown to be
effective, investigations on rich vehicle routing problems indicate that applying local
search moves may not converge to near optimal solutions (cf. Derigs and Vogel 2009).
The concept of large neighbourhood search (LNS) uses moves, which are destroying
the current solution structure significantly, and was successfully applied by Ropke
and Pisinger (2006). In this paper, we investigate these options for the VRPC, i.e. we
want to identify effective combinations of meta-heuristic control and move strategies.
Furthermore, we evaluate a specific and promising algorithmic setup on 23 instances
considered by El Fallahi et al. (2008) and Muyldermans and Pang (2007).

The paper is organized as follows: The vehicle routing problem with compartments
is introduced in Sect. 2 and a new benchmark suite is provided in Sect. 3. Section 4
presents heuristics for the VRPC, which are studied empirically on the benchmark
instances in Sect. 5. Conclusions are given in Sect. 6.

2 The vehicle routing problem with compartments

In this section, we describe the VRPC and formulate it as an integer linear program.
Furthermore, we discuss special aspects and possible extensions.

2.1 Problem formulation

The vehicle routing problem with compartments (VRPC) is an abstract problem cov-
ering different applications that can occur e.g. in retail and petrol industries. It extends
the classical capacitated VRP in several aspects: (i) it considers demands for multiple

123

U. Derigs et al.

inhomogeneous products rather than a homogeneous product, (ii) a vehicle consists
of multiple compartments rather than a single one, (iii) all goods delivered on a tour
must be assigned to compartments of a vehicle, (iv) certain product pairs must not
be loaded together into the same compartment, and (v) certain products must not be
loaded into certain compartments.

Formally, the VRPC involves a fixed set of vehicles V , a set of compartments C , a
set of products P , a set of locations L = {0, . . . , n}, and a set of orders O . All vehicles
have the same capacity vehCapa (vehCapa > 0) and the same set of compartments
C with the capacity compCapa(c) of compartment c ∈ C (compCapa(c) > 0). Cost
of travelling from location i to j is assumed to be symmetric and denoted as costi j ≥ 0.
Location 0 is the depot and Lc = L \ {0} is the set of customer locations. A customer
may place several orders, each referring to one single product. For each order o ∈ O ,
customer(o) ∈ Lc denotes the customer that placed the order, product (o) ∈ P the
product demanded by the customer, and quanti t y(o) > 0 the demanded quantity.
Thus, a customer may receive several deliveries of different orders. We assume with-
out loss of generality that each customer l ∈ Lc places at least one order, and there
is at least one order for each product p ∈ P . Furthermore, the delivery of one order
must not be split.

The relation I ncProd ⊆ P × P defines incompatibilities between products, i.e.
(p, q) ∈ I ncProd means that products p and q must not be transported together
in the same compartment. Incompatibilities between products and compartments are
expressed by the relation I ncProdComp ⊆ P × C , where (p, c) ∈ I ncProdComp
indicates that product p must not be transported in compartment c.

Each order has to be assigned to the compartment of a vehicle and all orders assigned
to one vehicle have to be sequenced. The resulting order sequence determines the
tour t = (t1, . . . , tr), ti ∈ L , of a vehicle. Each tour t starts and ends at the depot
(t1 = tr = 0), and the cost of the tour is

∑r−1
i=1 costti ti+1 .

The VRPC seeks an assignment of orders to vehicles, an assignment of orders to
compartments, and a sequence of the assigned orders per vehicle such that all vehi-
cle capacities and compartment capacities are met, the incompatibility relations are
satisfied, and the total cost of the determined tours is minimized.

2.2 Integer program formulation

The VRPC can be formulated as integer program:

min
∑

v∈V

∑

i∈L

∑

j∈L

costi j · bi jv (1)

subject to
∑

j∈Lc

b0 jv ≤ 1 v ∈ V (2)

∑

i∈L

bikv =
∑

j∈L

bk jv v ∈ V, k ∈ L (3)

123

Vehicle routing with compartments

uiv − u jv + |L| · bi jv ≤ |Lc| v ∈ V, i ∈ L , j ∈ Lc (4)

ul0v = 1 v ∈ V (5)
∑

o∈O

quanti t y(o) · xovc ≤ compCapa(c) v ∈ V, c ∈ C (6)

∑

o∈O

∑

c∈C

quanti t y(o) · xovc ≤ vehCapa v ∈ V (7)

∑

v∈V

∑

c∈C

xovc = 1 o ∈ O (8)

∑

o∈ordCust (j)

∑

c∈C

xovc ≤ |O| ·
∑

i∈L

bi jv v ∈ V, j ∈ Lc (9)

∑

o∈ord Prod(p)

xovc ≤ |O| · ypvc p ∈ P, v ∈ V, c ∈ C (10)

ypvc = 0 (p, c) ∈ I ncProdComp, v ∈ V (11)

ypvc + yqvc ≤ 1 (p, q) ∈ I ncProd, v ∈ V, c ∈ C (12)

bi jv ∈ {0, 1} i, j ∈ L , v ∈ V (13)

uiv ∈ {1, . . . , |L|} i ∈ L , v ∈ V (14)

xovc ∈ {0, 1} o ∈ O, v ∈ V, c ∈ C (15)

ypvc ∈ {0, 1} p ∈ P, v ∈ V, c ∈ C (16)

Objective (1) minimizes total transportation cost, where bi jv is a binary variable
indicating whether vehicle v travels from location i to j .

Constraint (2) ensures that each vehicle v departs at most once from depot 0. (3)
imposes that each arrival of vehicle v at location k corresponds to a departure of v
from k. Together with (2), a tour must always start and end at the depot 0 (if v is used).

Subtour elimination is based on the integer variable uiv that specifies the position
of location i in the tour of vehicle v. (4) ensures that all tours depart from the depot
0, by imposing that the position of customer j is higher than the position of location
i , if the vehicle v travels from i to j . As there are many potential numberings for the
same tour, (5) eliminates duplicates by enforcing the depot 0 to be at position 1.

The binary variable xovc indicates whether order o is delivered by vehicle v in com-
partment c. (6) states that the goods loaded into compartment c on vehicle v do not
exceed the compartment capacity compCapa(c). Analogously, (7) ensures that the
vehicle capacity vehCapa is not exceeded by the goods loaded into all compartments
of vehicle v. (8) ensures that each order is assigned to exactly one compartment on a
vehicle. (9) imposes that a vehicle must visit customer j if loads for j are assigned to
the vehicle. Here, ordCust (j) = {o ∈ O | customer(o) = j} denotes the orders of
customer j . In (10), the binary variable ypvc indicates whether product p is assigned
to compartment c on vehicle v. Here, ord Prod(p) = {o ∈ O | product (o) = p}
represents the orders for product p.

123

U. Derigs et al.

Using the incompatibility relations I ncProdComp and I ncProd, (11) and (12)
model incompatibilities between products and compartments as well as between two
products. (13)–(16) define the decision variables, which are all binary except for the
integer variable uiv .

2.3 Discussion

The capacitated VRP is a special case of the VRPC with one product only, one com-
partment per vehicle that has identical capacity as the vehicle, and no incompatibility
constraints. Therefore, the decision version of the VRPC is NP-complete.

Without loss of generality, we assume vehCapa ≤ ∑
c∈C compCapa(c). The

relation between the vehicle capacity vehCapa and the compartments’ capaci-
ties compCapa(c) indicates whether the compartment setup is configurable. If
vehCapa <

∑
c∈C compCapa(c), the compartments are flexible, and goods loaded in

one compartment may affect the available remaining capacity of other compartments.
If vehCapa = ∑

c∈C compCapa(c), the compartments are fixed as the capacity of
one compartment is independent from the goods loaded in other compartments. In
case of fixed compartments, (7) is redundant because of (6).

The problem formulation (1)–(16) is idealized from several perspectives and could
easily be extended. If there are weight and volume constraints, demands and capaci-
ties could be measured using different dimensions and not only one as in the current
formulation. Such an extension would add more equations of type (6) and (7), but no
new decision variables would be necessary.

The model assumes that vehicles are homogeneous, i.e. that they have the same total
capacity. Also, all compartments are either flexible or fixed and the compartments’
capacities are identical for all vehicles. (6) and (7) could be adapted to model vehicles
with different capacities and vehicle-dependent compartment capacities.

Currently, we assume enough capacity for all orders. However, in reality, we may
be faced with capacity shortage where not all orders can be delivered. In our current
formulation, capacity shortage leads to an infeasible integer program. Introducing non-
delivery costs into the objective function (1) could model such kind of applications.
Then, additional decision variables are necessary to specify which goods are delivered.

Our model assumes that initially the vehicles are empty. In some scenarios, vehicles
may have a preload assigned to some compartments, e.g. because a vehicle could not
fully perform a previously planned tour. This case can be modelled by preload orders,
each being pre-assigned to a compartment of a vehicle.

We only consider tours where each order is fully assigned to one compartment. In
some applications, splitting an order and distributing it among different compartments
or vehicles could be feasible. The potential of splitting orders was first observed by
Dror and Trudeau (1989). State-of-the-art heuristic approaches for solving the split
delivery vehicle routing problem were presented by Archetti et al. (2006) as well as
Derigs et al. (2009). These extensions would require to define how an order can be split,
e.g. continuously into arbitrary smaller parts or according to rules based on lot sizes or
other predefined bounds. All these variants would need more decision variables and
additional constraints.

123

Vehicle routing with compartments

In the remaining paper, we consider the problem formulation from Sect. 2.1. We
regard this as the core for VRPs involving compartments.

3 The benchmark suite for VRPC

Kalkoff (2006) developed an instance generator capable to create VRPC instances
according to predefined problem characteristics. Using this generator we created a set
of test instances which are available on http://www.ccdss.org/vrp/, intended to serve
as a VRPC benchmark suite for the research community. The instances were gener-
ated by systematically varying relevant design parameters. Therefore, the benchmark
suite is grouped into families of similar problem instances. This allows studying the
effects of special problem characteristics on the performance of algorithms as well
as the development of problem-specific algorithms. In addition, we can evaluate and
compare different optimization algorithms on the complete set of instances.

3.1 General problem structure

Table 1 lists the general characteristics of the test instances. The number of customers
varies between 10 and 200. The depot is always located at the centre of a two-dimen-
sional square. There are two possibilities on how the customers are placed. In the
non-clustered version, the customers are placed randomly on the square. In the clus-
tered version, we randomly place a pre-defined number of smaller squares on the square
which resemble clusters. Then, customers are evenly distributed over the clusters and
each customer is randomly placed in its square. The total demand of each customer
is 1,000. The demand for products follows two alternative product distributions: one
with two products and similar demand for the two products and one with three prod-
ucts and significantly different demands. The vehicle capacity is varied from 600 to
9,000 and the number of vehicles is chosen sufficiently large such that all orders can
be delivered. In total, there are 100 different parameter combinations represented by
Table 1.

3.2 Specific problem structure for petrol and food scenarios

Table 2 lists industry-specific characteristics of test instances. In the petrol scenario,
each vehicle has five fixed compartments of the same size. Each product is incompatible

Table 1 General characteristics
of test instances

Parameter Variations Values

Customers 5 10, 25, 50, 100, 200

Customer distribution 2 Clustered, not clustered

Customer demand 1 1,000

Product distribution 2 (0.53, 0.47), (0.68, 0.24, 0.08)

Vehicle capacity 5 600, 800, 1,000, 3,000, 9,000

Vehicles 1 Sufficiently large

123

http://www.ccdss.org/vrp/

U. Derigs et al.

Table 2 Specific characteristics of petrol and food instances

Parameter Petrol Food

Variations Values Variations Values

Compartments 1 5 1 2 or 3

Compartment capacity/vehicle capacity 1 0.2 1 1

Max. order demand/compartment capacity 2 1, 0.5 2 0.5, 0.25

Product incompatibility 1 Yes 1 No

Product-compartment incompatibility 1 No 1 Yes

with each other and there are no product-compartment incompatibilities. Thus, each
product can be loaded into each compartment, but a compartment can contain only
orders of the same product.

In the food scenario, product-compartment incompatibilities exist since each
product can be loaded only in one specific compartment. Therefore, the number of
compartments equals the number of products. The compartments are flexible, i.e.
a compartment’s capacity equals the vehicle capacity. Although there are no prod-
uct incompatibilities, the product-compartment incompatibilities imply that only one
product can be loaded into one compartment.

An order’s demand may exceed the compartment capacity. For this case, we define a
maximum order demand and split the original order into several (smaller) orders. The
split is performed by cutting the original order into several orders with maximum order
demand and one order for the remaining demand of the original order. For example,
assuming compartment capacity of 200 and maximum order demand of 100, an order
with quantity 530 would be cut into five orders with quantity 100 and one order with
quantity 30. We consider two alternatives for the maximum order demand. For petrol,
the maximum order demand is either the same or half of the compartment capacity.
For food, it is either one half or a quarter of the compartment capacity.

Given the 100 different general parameter combinations in Table 1, the two petrol
scenarios and the two food scenarios listed in Table 2 yield a total of 400 instances,
which are the basis for the 200 representative instances which we used to calibrate
our solver suite. Some of the generated instances were found to be redundant, due to
the fact that in some cases the splitting procedure did not split any order because the
compartment capacity was larger than all customers’ orders.

4 The heuristic solver suite for VRPC

Vehicle routing problems are NP-complete combinatorial optimization problems, and
thus only small instances can be solved to optimality and for instances of practical
size arising in real-world scenarios, one has to resort to heuristic methods.

Most heuristics for the VRP are search procedures which start from one or sev-
eral feasible solutions, obtained by so-called construction heuristics, and iteratively
improve the solutions by some kind of neighbourhood search where the improvement
is controlled by a so-called meta-heuristic. Here, the essence of a good search is the

123

Vehicle routing with compartments

intelligent combination of intensification and diversification. Diversification allows
scanning large parts of the search space, i.e. the set of feasible tours, and intensifica-
tion is used to scan promising regions more carefully.

Neighbourhood search for the VRP is based on so-called move operators which
exchange objects either within a tour (intra-tour moves) or between tours (inter-tour
moves). In the classical VRP where every customer receives exactly one delivery,
these objects refer to single customers or sequences/sets of customers. In our case, the
basic planning entities are the orders and thus we move orders or sequences/sets of
orders. Many variants of move operators have been proposed for the different VRP
variants; they are all combining rules for the selection of how many and which objects
to delete from a tour and where to insert these objects again. When inserting objects,
it is necessary to guarantee feasibility of the resulting tours. Checking feasibility of
an insertion is the computational bottleneck, since for rich vehicle routing problems
quite a number of aspects have to be tested, like vehicle capacity, time windows or
load compatibility. Note that for the classical VRP with homogeneous products and
without compartments, customers with their entire delivery are moved. The VRPC
considers orders of different products for one customer and thus we may move single
orders. Instead of “removing/inserting a customer from/into a tour” we have to decide
on “removing/inserting an order from/to a compartment of a vehicle” which requires
checking load and compatibility constraints and then to decide on the order sequence,
i.e. the route that the vehicle should take and that determines the cost.

The algorithmic tree presented in Fig. 1 is adopted from Piesche (2007) and dis-
plays in a structured form a survey on the various heuristic approaches/algorithms
which we have investigated in our computational study. Although Cordeau et al.
(2005) concluded that methods working with one solution at a time are superseded by
population-based methods, we did not include population-based methods in our study.
Our choice was motivated by our earlier work on other VRP variants (cf. Derigs and
Kaiser 2007; Derigs and Reuter 2009; Derigs and Vogel 2009), and we wanted to inves-
tigate how the methods and implementations can be extended and how they perform
on this richer class of VRP.

The remaining part of this section gives an overview on our algorithmic test-bed.
We assume that the reader is familiar with the basic concepts and thus we only give
a short description of the various methods with some details which are specific for
our problem at hand and our study. The most important references to the underlying
literature are given, too. The tree motivates to structure the exposition into subsections
corresponding to the components of the tree: local search, large neighbourhood search,
meta-heuristics, adaption and construction.

4.1 Intensification: local search

Traditionally, for the simple capacitated VRP neighbourhood search based on moves
swapping only a very small number of customers has been applied. Such local search
(LS) methods for VRP can be partitioned into intra- and inter-tour exchange methods.
Among the intra-tour exchange methods, originating from the work on the travelling
salesman problem (TSP), the so-called class of k-opt methods (cf. Lin and Kernighan

123

U. Derigs et al.

Large Neighbourhood Search

Remove Operator Insert Operator

•Order
•Random
•Shaw
•Worst

•Tour
•Random
•Longest-Distance
•Worst-Capacity

•Greedy
•Regret

•Regret-2
•Regret-3
•Regret-4
•Regret-5
•Regret-m

Local Search

Intra-Tour Operator Inter-Tour Operator

•2-opt
•Or-opt

•2-opt*

Adaption

•Neighbourhood class
•Operator
•Noise

Metaheuristic

•Random Walk
•Descent
•Simulated Annealing
•Record-to-Record Travel
•Great Deluge Algorithm
•Tabu Search

(Attribute Based Hill Climber)

Construction

•Greedy Insertion
•Regret-k Insertion
•Sweep method
•Savings method

Fig. 1 Algorithmic tree

1973) is most widely used. Here, for a move a subset of k connections between cus-
tomers is deleted from the tour, and the resulting segments are tentatively reconnected
in all possible ways, and the most profitable reconnection is chosen. Note that only
small values like k ∈ {2, 3, 4} are computationally feasible. Or (1976) proposed a
restricted variant of 3-opt where strings of sequences of 1, 2 or 3 consecutive custom-
ers are replaced reducing the computational effort compared to 3-opt without losing
too much quality. For the VRPC, routings are described as sequences of orders and thus
connections between orders are exchanged, respecting of course the fact that for intra-
tour exchanges deleting a connection between orders of the same customer will never
result in an improvement since the customer would have to be visited more than once.

Most inter-tour exchanges are applied to two tours and are based on the relo-
cate/exchange principle. Relocate inserts an order of the first tour at an appropriate
position in the second tour. Exchange swaps two orders between the tours. We have
implemented 2-opt*, a special inter-tour move introduced by Potvin and Rousseau
(1995) where two connections, one from each tour, are removed. This produces four
sub-tours which are then recombined. Note that these moves lead to relatively small
neighbourhoods and are thus computationally very efficient. Also, for rich vehicle
routing problems, the exchange of a larger set of deliveries will most probably violate
some constraints.

123

Vehicle routing with compartments

In our solver suite we have used these neighbourhoods to implement three intensi-
fying heuristics—SD2, SDOr and SD2*—which start from a feasible solution as input
and use the steepest descent strategy to construct an associated local optimum.

4.2 Diversification: large neighbourhood search

Large neighbourhood search (LNS) is also referred to as ruin-and-recreate strategy (cf.
Schrimpf et al. 2000). Here, in order to obtain a “neighbour” the structure of a solution
is altered significantly. In the case of VRPC, a significant number q of the orders is
first deleted from their respective tours and then re-inserted. An LNS move shows a
significantly higher complexity, leads to a larger neighbourhood than local search and
re-insertion is more time-consuming and thus efficient implementation is mandatory.
Also the brute force testing of entire neighbourhoods for potential improvements—
as is done, for instance, in steepest descent search—becomes infeasible. Intelligent
criteria for selecting the orders to be removed/inserted are important.

The LNS concept was first proposed by Shaw (1998a,b) for complex VRP. He
introduced the “similarity” concept for selecting customers to be deleted and based
on this he developed a well-defined VRP procedure, while Pisinger and Ropke (2007)
proposed LNS as a generic heuristic based on domain-independent principles for
deletion/insertion which have to be specialized for the specific problem type. Quite
recently adaptive LNS (ALNS), an extension of the basic LNS concept, was applied
rather successfully by Ropke and Pisinger (2006) for solving rich VRP, e.g. the pickup
and delivery vehicle routing problem with time windows. In ALNS, different strat-
egies/heuristics for deletion and re-insertion are concurrently used with a learning
mechanism guiding the selection of which strategy to apply next. In Bartodziej et al.
(2009) we successfully applied ALNS to a combined vehicle and crew scheduling
problem with rest constraints.

As mentioned earlier, all remove (ruin) and insert (recreate) operators are highly
problem-specific. The basic procedure is always as follows: after performing a remove
operator, we obtain an incomplete solution with a set of partial tours which are feasible
in the sense that no tour-related constraints like vehicle capacity or product compati-
bility are violated and a set of orders which are not assigned to a tour/vehicle. These
orders are then submitted to an insertion routine. In the following, we describe the set
of operators which we have implemented for VRPC.

4.2.1 Removal heuristics for VRPC

We have implemented six different removal heuristics. The first three—Random
Removal (R-O), Worst Removal (W-O) and Shaw Removal (S-O)—are adoptions
from Ropke and Pisinger (2006), which remove single orders instead of customers
as in the case of the VRP with homogeneous goods. Let q be the number of orders
to be removed. Then in R-O we simply remove q randomly selected orders from the
solution while in W-O we remove q orders which seem to be “misplaced” at their
current position. Here, an order is regarded as misplaced if the cost decrease is signif-
icantly high when removing it from the solution. S-O is based on the Shaw-concept of

123

U. Derigs et al.

“similarity” and the procedure is simple: one order is selected randomly and removed,
and then q − 1 more orders are removed, with each being similar to at least one of
the orders which have been removed before. Here, similarity is defined based on a
problem-specific distance measure. For VRPC, we have modified the distance mea-
sure of Shaw (1998a) using three components: the distance of customer locations and
the difference in quantity and product, respectively.

For the sake of simplicity, let costi j denote in the following the distance/cost
between (the customers of) two orders i, j ∈ O and cmax the maximal distance
between any two customers as well as qmax the maximal difference of quantities
between any two orders. We define

p(i, j) :=
{

1 if product (i) �= product (j)

0 otherwise
(17)

indicating whether two orders i, j ∈ O have the same product type or not. Using
weights ϕ, ψ , ω the distance measure is given by

R(i, j) := ϕ · costi j

cmax
+ ψ · |quanti t y(i)− quanti t y(j)|

qmax
+ ω · p(i, j) (18)

In addition to these variants of removal heuristics for VRP, we have designed
and implemented three new heuristics—R-T, L-T and W-T—which alter the solution
structure more purposefully and support a different diversification. In these removal
heuristics, we select entire tours and then remove their complete set of orders until a
preset number of q orders has been removed. In R-T, we select the tours randomly,
while in L-T (W-T) we select the tours having longest tour length (smallest load) and
thus, those tours which are extreme in a sense. Note that for the last tour selected, only
the remaining number of orders to be removed is chosen and thus not all orders of this
tour are removed.

4.2.2 Insertion heuristics for VRPC

We have implemented two insertion strategies, GREEDY and REGRET, which were
already proposed by Ropke and Pisinger (2006). In the following, let I be the set of
orders to be re-inserted and for o ∈ I and v ∈ V let cost_increasevo be the increase
in total cost if order o is inserted into the tour of vehicle v at the cheapest position.
GREEDY sequentially searches for the pair (o′, v′), o′ ∈ I, v′ ∈ V leading to a min-
imal cost increase, cost_increasev

′
o′ = min

{
cost_increasevo

∣
∣ o ∈ I, v ∈ V

}
, and

inserts order o′ into tour v′.
The myopic GREEDY insertion heuristic tends to postpone the insertion of those

orders which can only be inserted at a relatively high cost increase. Yet, since
in the course of the procedure the number of tours into which an order can be
inserted without violating a constraint diminishes, whereas the cost for insertion
increases. Thus, a more foresighted criterion should be used to prevent this situ-
ation. For o ∈ I , let vok ∈ V, k ∈ {1, . . . , |V |} be the vehicle/tour to which

123

Vehicle routing with compartments

order o can be assigned at the k-th lowest cost increase, i.e. cost_increasevok
o ≤

cost_increase
vok′
o ∀k < k′. For k ≥ 2, we define REGRET-k based on an indicator

regretk
o := ∑k

i=2

(
cost_increasevoi

o − cost_increasevo1
o

)
which measures the dis-

advantage (regret) of not inserting o in the currently best suited tour but to a less
suitable one. Here, large values of k yield a high degree of foresight. Now, in each
iteration, we insert the order having the highest regret first. In our implementation we
have used REGRET-k for k ∈ {2, 3, 4, 5,m}, where m denotes the number of tours.

4.3 Adaptive search

To obtain a robust heuristic, Ropke and Pisinger (2006) proposed to alternate between
neighbourhoods, using all pairs of removal and insertion operators, but in an adap-
tive way. Weights are assigned to the different operators and a kind of roulette wheel
selection is used, i.e. if we have k neighbourhoods with weights wi , i ∈ {1, . . . , k},
then we select the neighbourhood j with probability

p j := w j
∑k

i=1wi
(19)

The weights are automatically adjusted based on a score-value for each neighbourhood
which is calculated using the information on their performance in earlier iterations.
To enhance diversification, Ropke and Pisinger (2006) proposed to disturb the exact
insertion cost by adding a randomly generated noise term and to let the adaptive mech-
anism decide whether to use the real cost or the disturbed cost for determining the
next insertion. We have modified their approach in only one aspect that also the local
search moves are used concurrently with the LNS operators and here the weights
decide whether a local search operator or an LNS operator is used. For details on the
exact procedure of score-updating and generating noise we refer to Ropke and Pisinger
(2006).

The pseudocode for our search heuristic is shown in Algorithm 1. It abstracts from
the initial solution and the meta-heuristic control used. Also, note that for sake of
simplicity we write cost (S) for the cost of a feasible solution S.

4.4 Construction heuristics

LS and LNS are improvement methods which can only be started from a given initial
feasible solution. The purpose of a construction heuristic is to generate a feasible solu-
tion of acceptable quality in rather short computation time. A widely used principle
is the greedy principle where based on some problem-specific myopic decision rule
objects are sequentially inserted into partial solutions. Two old and prominent greedy
methods which have been proposed for the VRP and which we have used in our study
too are the Savings method (Clarke and Wright 1964) and the Sweep method (Gillett
and Miller 1974).

In the Savings method, deadhead tours are built for every order and the savings
are calculated which may result when combining two deadhead tours to a larger tour.

123

U. Derigs et al.

Then starting with the highest saving and working down the ordered savings list, tours
are combined by connecting last and first orders if possible. And here feasibility con-
straints have to be checked. Except for this eventually complex and time-consuming
check this greedy method is rather fast.

The Sweep method is applicable for planar problems only where the locations for
customers are given by polar coordinates. In the classical VRP a customer location is
assigned 0-angle, and the angles of the other customer locations are computed from
this. Then customers are ranked in increasing order of their polar coordinate and start-
ing from the unrouted customer having the smallest angle deliveries are sequentially
assigned to the first vehicle as long as constraints on capacity are fulfilled. Otherwise,
the current vehicle is closed and the process is repeated with a new vehicle and so on.
Finally, the customer deliveries in each vehicle cluster are routed by solving a corre-
sponding TSP. For VRPC, we have modified this procedure. All orders are ordered
based on their customer’s polar angle and sweeps are started from the first unassigned
order. Now, in the case that the next order cannot be assigned to the current vehicle
due to a violation of a constraint, we do not close the vehicle but we go on trying the
following orders until we have checked all unassigned orders or the remaining vehicle
capacity becomes smaller than the smallest order. In that case, we close the vehi-
cle and repeat from the first unassigned order. Obviously, the quality of the solution

123

Vehicle routing with compartments

depends on the customer defining the 0-angle and thus the procedure should be repeated
from different especially selected customers. In our approach for solving VRPC, we
have implemented and tested several variations of the Sweep method (cf. Sect. 5). An
alternative to using the Savings or Sweep method is to use one of the LNS insertion
heuristics, GREEDY or REGRET, to insert all orders into the “empty solution”.

4.5 Meta-heuristics

LS and LNS are heuristic principles to solve hard (combinatorial) optimization prob-
lems based on the specification of problem-specific neighbourhood structures. Starting
from an initial solution S0, a sequence S0, S1, S2, . . . of solutions is created, where
Si is contained in the neighbourhood of Si−1, i = 1, 2, . . ., and the selection of the
solution Si ∈ N (Si−1) is guided by a meta-heuristic, i.e. some (heuristic) strategy
which governs the search process.

The conceptually most simple approach for guiding LS is called Steepest Descent
(SD) where one always selects and accepts the most improving neighbour until no fur-
ther improvement is possible, and a solution is obtained which is locally optimal with
respect to the neighbourhood. This simple heuristic has the tendency to get trapped in a
“bad” local optimum. In our computational study, we have investigated classical meta-
heuristics which overcome this problem. For the first three heuristics neighbours are
generated randomly. In Simulated Annealing (SA) (Kirkpatrick et al. 1983) a solution
Si ∈ N (Si−1) is always accepted if cost (Si) ≤ cost (Si−1) and accepted with proba-

bility e− cost (Si)−cost (Si−1)
T if cost (Si) > cost (Si−1). Here, T is the so-called temperature

which is initialized at T > 0 and is decreased every L iterations by performing the
so-called geometric cooling update T := α · T with 0 < α < 1 such that finally
the procedure converges to a simple iterative Descent Algorithm. Record-to-Record
Travel (RRT) (Dueck 1993) accepts a solution if it does not exceed the best solution
found so far during the search by a specified deviation value, and the Great Deluge
Algorithm (GDA) (Dueck 1993) accepts a solution if its objective function value is
below a so-calledwaterlevel value which is decreased by a so-called dryspeed value
each time a solution is accepted.

On the other hand, Tabu Search (TS) (Glover 1989, 1990) always moves to the best
neighbour even if this is not leading to an improvement, and, to avoid cycling, solutions
which have already been visited, are forbidden. For this purpose, solutions possessing
some attributes of recently explored solutions are temporarily declared tabu, unless
their cost is less than a so-called aspiration level.

With respect to implementation, all of these meta-heuristics leave the user with sev-
eral degrees of freedom, i.e. the control of the algorithmic process is specified through
several parameter settings. In SA, we have to choose the initial probability and the
schedule of lowering this probability over time, the so-called cooling schedule, and
in TS we have to specify the length of the tabu-list, which controls the number of
iterations that a solution stays tabu. Whittley and Smith (2004) proposed the Attribute
Based Hill Climber (ABHC) heuristic as a parameter-free variant of TS which was
successfully applied to the simple VRP by Derigs and Kaiser (2007) and showed to
be compatible in quality and performance with the state-of-the-art VRP heuristics.

123

U. Derigs et al.

ABHC uses a special concept for specifying non-tabu neighbours which is generic
and which needs to be specialized for every problem domain. Here, certain charac-
teristic potential properties of solutions, the so-called attributes, have to be specified
and a solution is acceptable if it is the best solution found so far for at least one attri-
bute. Hence, ABHC is parameter-free and except for some tie-breaking completely
deterministic.

5 Empirical results

In this section, we present the essence of a comprehensive computational study extend-
ing the work described by Piesche (2007) in which we have tested numerous variants
of combinations of the subheuristics within the different components from the solver
suite introduced in Sect. 4 on the instances from the petrol/food benchmark suite. Then
we have applied one specific parameterization which has shown to be rather effective
on a set of benchmark problems which were published by El Fallahi et al. (2008) and
Muyldermans and Pang (2007). All our programs have been written in C# and the
computational results were obtained on 3 GHz PCs with 2GB memory running under
Windows XP.

5.1 Computational tests on the VRPC benchmark suite

It is evident that due to the large number of heuristic modules which have been imple-
mented an enormous number of potential combinations exists, and it is beyond any
realistic expectation to test all of these. Therefore, we have designed a test procedure
on our set of 200 benchmark problems which concentrates on identifying appropriate
and recommendable choices within each component—construction, search neighbour-
hoods/moves and meta-heuristic control—by applying the ceteris paribus principle, i.e.
we compared different combinations of neighbourhoods using the same meta-heuris-
tic control which had shown to be best when applying the entire set of neighbourhood
moves etc. Our findings can be summarized as follows:

• no significant difference in computational behaviour between the two classes of
instances—petrol industry and food distribution—could be observed which may
be due to the fact that our implementation is oriented towards solving the general
VRPC and did not consider the specifics of the two domains explicitly,

• yet, when neglecting the compartment constraints, i.e. solving the instances as stan-
dard VRP, it turned out that the difference between the heuristically determined
VRP and VRPC solution values is rather small for the examples with flexible com-
partments but specific compartments per product type (food scenario), while this
difference is significant for the examples with fixed compartment sizes but no incom-
patibilities between products and compartments (petrol scenario),

• the entire set of diversification and intensification concepts/heuristics is essential to
obtain the best performance with respect to quality,

123

Vehicle routing with compartments

• the application of the adaption strategy (as well as noise) is not of significant impor-
tance on the instance level, i.e. we could identify parameter configurations which
worked well on the entire set of instances,

• an intelligent combination of Sweep and Savings has shown to give the best start
solutions, yet, the choice of a proper combination of construction/start heuristics is
more crucial with respect to running time than solution quality,

• the choice of the meta-heuristic control is of minor influence with Record-to-Record
Travel being the best choice if also complexity of implementation is considered.

We will now describe the experimental design and present several tables which
support these statements. We only give aggregated information on relative deviation
to the best solutions which we could find during our study. The best solutions found
are published together with the benchmark data.

5.1.1 Comparison of operators

In the following, we first summarize our findings on the use of neighbourhoods/move
operators. For that purpose, we have compared different combinations using the same
meta-heuristic control which has shown to be rather effective: RRT with a deviation
of 0.009; thus we accept a neighbour solution if it does not exceed the best-known
solution found so far by more than 0.9%. For the LNS-removal operators we choose
q, the number of orders to be removed randomly between four and one-third of the
number of orders. For the distance measure we have set ϕ = ψ = 100 and ω = 50.

The quality is measured systematically by giving for each combination the average
deviation from the best solutions found over all 200 instances. The implementation
with the entire set of operators is used as reference or basic configuration. In a table,
every column corresponds to an algorithmic concept, and every row represents a
specific parameterization where a dot indicates that the associated concept has been
applied.

Table 3 shows how starting from the reference implementation the solution quality
changes if exactly one algorithmic concept is deleted from the basic configuration.
Except for the version where SD2* has been eliminated, all other combinations per-
form similar. This result shows that except for SD2*, basically every concept can be
compensated. The next test was performed to identify the impact of a single operator
within its specific component class. For that purpose, all other operators within the
class were eliminated. From Table 4 we can see that especially for the LNS removal
class, different operators representing different heuristic principles are necessary, and
for LNS insertion at least one REGRET-operator is necessary. Within the class of
intensification operators, SD2* turns out to be essential, which could be expected
from the previous result.

Table 5 shows the results for some characteristic configurations. First, comparing
configurations C1 and C2 it is remarkable that when using all move operators the use
of the adaptive strategy and introducing noise does improve the solution quality only
marginal. Yet, due to the fact that these instruments are computationally inexpensive
we recommend their use. Comparing configurations C3 and C4, one can see that pure
local search is ineffective for VRPC while with pure LNS still acceptable results are

123

U. Derigs et al.

Ta
bl

e
3

Se
ns

iti
vi

ty
an

al
ys

is
fo

r
in

di
vi

du
al

he
ur

is
tic

s

C
on

fig
ur

at
io

n
S-

O
W

-O
R

-O
R

-T
L

-T
W

-T
G

re
ed

y
R

eg
-2

R
eg

-3
R

eg
-4

R
eg

-5
R

eg
-m

SD
2

SD
O

r
SD

2*
N

oi
se

A
da

pt
iv

ity
D

ev
ia

tio
n

(%
)

S1
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

1.
5

S2
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
1.

7

S3
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
1.

8

S4
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
1.

6

S5
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
1.

5

S6
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
1.

5

S7
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
1.

7

S8
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
1.

5

S9
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
1.

6

S1
0

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

1.
5

S1
1

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

1.
4

S1
2

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

1.
5

S1
3

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

1.
5

S1
4

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

1.
5

S1
5

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

1.
5

S1
6

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

2.
1

S1
7

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

1.
7

S1
8

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

1.
6

123

Vehicle routing with compartments

Ta
bl

e
4

Im
pa

ct
an

al
ys

is
fo

r
in

di
vi

du
al

he
ur

is
tic

s

C
on

fig
ur

at
io

n
S-

O
W

-O
R

-O
R

-T
L

-T
W

-T
G

re
ed

y
R

eg
-2

R
eg

-3
R

eg
-4

R
eg

-5
R

eg
-m

SD
2

SD
O

r
SD

2*
N

oi
se

A
da

pt
iv

ity
D

ev
ia

tio
n

(%
)

I1
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

1.
5

I2
•

•
•

•
•

•
•

•
•

•
•

•
1.

9

I3
•

•
•

•
•

•
•

•
•

•
•

•
2.

2

I4
•

•
•

•
•

•
•

•
•

•
•

•
2.

2

I5
•

•
•

•
•

•
•

•
•

•
•

•
3.

3

I6
•

•
•

•
•

•
•

•
•

•
•

•
5.

4

I7
•

•
•

•
•

•
•

•
•

•
•

•
4.

1

I8
•

•
•

•
•

•
•

•
•

•
•

•
2.

8

I9
•

•
•

•
•

•
•

•
•

•
•

•
1.

8

I1
0

•
•

•
•

•
•

•
•

•
•

•
•

1.
7

I1
1

•
•

•
•

•
•

•
•

•
•

•
•

1.
6

I1
2

•
•

•
•

•
•

•
•

•
•

•
•

1.
7

I1
3

•
•

•
•

•
•

•
•

•
•

•
•

1.
8

I1
4

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
2.

2

I1
5

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
2.

2

I1
6

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
1.

6

123

U. Derigs et al.

Ta
bl

e
5

A
na

ly
si

s
of

ch
ar

ac
te

ri
st

ic
co

nfi
gu

ra
tio

ns

C
on

fig
ur

at
io

n
S-

O
W

-O
R

-O
R

-T
L

-T
W

-T
G

re
ed

y
R

eg
-2

R
eg

-3
R

eg
-4

R
eg

-5
R

eg
-m

SD
2

SD
O

r
SD

2*
N

oi
se

A
da

pt
iv

ity
D

ev
ia

tio
n

(%
)

C
1

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
1.

5

C
2

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
1.

7

C
3

•
•

•
7.

3

C
4

•
•

•
•

•
•

•
•

•
•

•
•

•
•

2.
2

C
5

•
•

•
•

•
•

•
•

•
•

•
•

•
•

3.
0

C
6

•
•

•
•

•
•

•
•

•
•

•
•

•
•

1.
7

C
R

•
•

•
•

•
•

•
•

•
•

•
•

1.
4

123

Vehicle routing with compartments

produced. Comparing configurations C5 and C6, we can conclude that among the
LNS removal operators those removing single orders are essential while the operators
which remove complete tours should only be regarded as add-ons. Based on these
findings we could identify several configurations which are almost equally good for
all instances and which are obtained from C1 by omitting a small number of operators
only. Configuration CR seems to be the best choice and is recommended. Here, we
retain only one vehicle-based removal operator (W-T) and we omit GREEDY inser-
tion and REGRET-4 as well as SDOr. Thus, the number of operators has been reduced
achieving the solution quality of the reference implementation C1.

5.1.2 Comparison of meta-heuristics

This comparison was performed using the reference configuration, i.e. applying all
move operators as well as the adaptive strategy and noise. First, we have performed
individual tests to determine good parameterizations for every single meta-heuristic.
We just give the result of these tests:

For Simulated Annealing the best cooling factor was α = 0.9999 and L was set
to 1. For Record-to-Record Travel, a deviation of 0.009 has shown to give good
results while for Great Deluge the dryspeed was set to 0.009. For ABHC, we used
the connections (i, j) between two customers as attributes, a choice which has shown
to be effective for the simple VRP; thus, for VRPC a solution has attribute (i, j) if
a tour exists with two consecutive deliveries of orders with i being the customer of
the first and j being the customer of the second delivery. In combination with LNS,
ABHC turned out to be computationally infeasible since it requires scanning entire
neighbourhoods. Therefore, we have implemented a variant ABHC-100 which works
as follows: for the current solution, we test 100 remove/insert—moves and then we
move to the best acceptable neighbour.

We have run the meta-heuristics on every instance for a fixed time of 10 CPU min-
utes. As reference implementation for the meta-heuristic competition, we have also
implemented the simple random walk control (RW) that accepts every solution and
the simple descent control (DC), which accepts every improving solution. In Fig. 2,
we display the results giving for each meta-heuristic the average and the maximal
deviation. As one can see, the differences among the meta-heuristics are not large
with RRT performing best.

5.1.3 Comparison of construction heuristics

Our computational tests have shown that Sweep as well as Savings outperform each
other significantly on certain sets of instances and that robust results can only be
obtained by using the best solution from Savings and a specific Sweep variant. Obvi-
ously, the solution obtained by Sweep is dependent on the choice of the 0-angle
customer. Better results can be obtained by Sweep-All which is starting Sweep from
every order and selecting the best solution obtained, but this turned out to be too costly
for our benchmark instances. Therefore, we have implemented a rule called “big Gap”
for selecting the first customer: Choose the order from the sorted list which has the
largest angle with its predecessor in the list. Note that we use Opt2 and OrOpt in a

123

U. Derigs et al.

3.12

1.14 0.82 0.74 0.83 1.53

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

RW ABHC-100 GDA RRT SA DC

D
ev

ia
ti

o
n

 (
%

)

Metaheuristic

maximal deviation average deviation

Fig. 2 Comparison of meta-heuristics

Table 6 Comparison of construction heuristics

Savings Sweep-All Sweep big Gap Savings +

Sweep-All Sweep big Gap

Average deviation (%) 11.9 10.9 12.9 7.7 8.6

Maximal deviation (%) 31.4 36.2 55.8 27.3 29.5

Minimal deviation (%) 0 0 0 0 0

Average CPU-time (min:sec) 00:00.80 00:15.90 00:00.20 00:16.60 00:01.00

Maximal CPU-time (min:sec) 00:12.80 03:00.70 00:03.20 03:20.80 00:15.20

postprocessing to optimize the routings in the resulting clusters. The results are shown
in Table 6. Applying LNS insertion for constructing initial solutions did not pay off
since the running time was comparable to the running time of Sweep-All, yet the
quality was inferior to Savings + big Gap Sweep.

5.1.4 Impact of compartment constraints

In a further analysis, we have studied to which extent the compartment constraints
affect the tour length of the solutions. For each instance of the test set, we have created
the associated standard VRP instance by considering every order as an individual cus-
tomer and keeping the original vehicle capacity but neglecting different product types,
compartments and compatibility constraints. We have solved these VRP instances
using the ABHC heuristic from Derigs and Kaiser (2007)—with a large number of
iterations per instance (400,000) to obtain high-quality VRP solutions—and we have
then compared the results with the best solutions we have found for the original VRPC
instances. Table 7 shows the average and maximum percentage by which the VRPC

123

Vehicle routing with compartments

Table 7 Deviations of VRPC solutions from corresponding VRP solutions

Scenario r Average deviation (%) Maximum deviation (%)

Food 0.6 0.47 1.82

Food 0.8 0.39 1.71

Food 3 0.01 0.07

Food 9 −0.44 −1.98

Petrol 0.6 2.72 8.32

Petrol 0.8 4.42 10.54

Petrol 1 20.19 44.40

Petrol 3 16.74 24.61

Petrol 9 20.64 30.86

tour lengths exceed the VRP tour lengths. Here, we have analysed the influence of two
problem characteristics: we distinguish the food and the petrol scenario, and the ratio
r between vehicle capacity and single customer demand (cf. Table 1). Obviously, the
deviations for the food instances are close to 0% since in the case of flexible compart-
ments the VRPC is equivalent to the standard VRP unless certain constellations of
compatibility constraints apply. Note, that for the food case all instances with r = 1
turned out to be trivially solvable and have been discarded from our sample. For the
petrol scenario, we observed notably high deviations with a peak for r = 1. Here, for
the VRP each customer can be completely served by a deadhead tour, while for the
VRPC it must be served by multiple tours which results in an increase in total tour
length.

5.2 Results on the instances from the literature

Recently, two studies on a special case of the VRPC were published, which state com-
putational results on reproducible instances. Here, the well-known instances for the
VRP from Christofides et al. (1979) and Eilon et al. (1971) were transformed into sets
of VRPC instances with two compartments with fixed capacities and two products by
splitting the request of each customer into two equal amounts, one per product. Each
product is compatible with only one compartment. Thus, these instances belong to
a specific and combinatorially less complex class of our food scenario. Due to this
construction mechanism, a solution for the original VRP is feasible for the associated
VRPC. El Fallahi et al. (2008) transformed 20 instances with seven of these instances
including a route length constraint which could not be solved by our present imple-
mentations. Muyldermans and Pang (2007) transformed a set of 19 instances, from
which nine were also considered by El Fallahi et al. (2008). For comparison, we run
our implementation using the configuration CR where we have tuned the deviation-
parameter of RRT only. For this class of instances deviation = 0.03 showed to be a
recommendable choice. The results are summarized in Fig. 3 and Table 8. We adopt
the identifiers from Toth and Vigo (2002): the first three-digit integer gives the number
of clients including the depot and the second two-digit integer gives the number of

123

U. Derigs et al.

1200

1400

1600

1800

2000

E051-05e
E072-04f
E076-07u
E076-08s
E076-10e
E101-08e
E101-10c
E121-07c
E135-07f
E151-12c

200

400

600

800

1000

0 10 20 30 40 50 60

C
o

st

Time(minutes)

E200-17c
E241-22k
E253-27k
E256-14k
E301-28k
E321-30k
E324-16k
E361-33k
E397-34k
E400-18k
E421-41k
E481-38k
E484-19k

Fig. 3 Convergence with increasing running time

vehicles needed. We use the (best known) solution values for the original VRP as
reported by Derigs and Kaiser (2007) as reference values.

Figure 3 shows the convergence of our implementation with increasing running
time. As can be seen, after about 20 min of CPU-time the solution quality does not
improve significantly.

Table 8 states the results reported by El Fallahi et al. (2008) for their memetic algo-
rithm and their Tabu Search, the results reported by Muyldermans and Pang (2007)
for different numbers of iterations of their guided local search implementation as
well as the results of our implementation for four different running times (5, 10, 20,
and 60 min). Note that the running times reported by El Fallahi et al. (2008) and
Muyldermans and Pang (2007) are in seconds based on a PC Pentium 4 with 2.4 GHz
and a PC Pentium M740 with 1.73 GHz, respectively. After 5 min, we reach a better
solution quality than El Fallahi et al. (2008) and worse quality than the 1200k-ver-
sion of Muyldermans and Pang (2007) on 16 out of 19 instances. After 10 min of
CPU-time, our implementation yields comparable solution quality as Muyldermans
and Pang (2007). After 20 min of CPU-time, we achieve better solution quality on
11 out of 19 instances considered by Muyldermans and Pang (2007). After 60 min of
CPU-time, our implementation yields better or equal solution values on all but one
instance.

Thus our algorithm has shown to be competitive and is able to produce better solu-
tions for longer running times on the instances considered by El Fallahi et al. (2008)
and Muyldermans and Pang (2007). Besides speed and accuracy Cordeau et al. (2002)
identified flexibility as another essential attribute for a heuristic. Here, flexibility refers
to the potential of a heuristic to accommodate the various side constraints encountered
in real-life applications. Note that our algorithm has been designed for a more general

123

Vehicle routing with compartments

Ta
bl

e
8

C
om

pa
ri

so
n

w
ith

E
lF

al
la

hi
et

al
.(

20
08

)
an

d
M

uy
ld

er
m

an
s

an
d

Pa
ng

(2
00

7)

In
st

an
ce

V
R

P
E

lF
al

la
hi

et
al

.(
20

08
)

M
uy

ld
er

m
an

s
an

d
Pa

ng
(2

00
7)

D
er

ig
s

et
al

.

M
A

T
S

G
L

S
(3

00
k)

G
L

S
(6

00
k)

G
L

S
(1

20
0k

)
5

m
in

10
m

in
20

m
in

60
m

in

C
os

t
C

os
t

T
im

e
C

os
t

T
im

e
C

os
t

T
im

e
C

os
t

T
im

e
C

os
t

T
im

e
C

os
t

C
os

t
C

os
t

C
os

t

E
05

1-
05

e
52

4.
61

52
4.

60
23

.7
52

4.
60

15
.8

52
4.

61
12

3.
6

52
4.

61
24

7.
2

52
4.

61
53

8.
2

52
5.

83
52

5.
83

52
4.

61
52

4.
61

E
07

6-
10

e
83

5.
26

84
2.

70
55

.1
85

1.
80

21
.5

84
2.

93
12

7.
8

83
7.

40
25

3.
8

83
7.

40
51

6.
6

83
9.

70
83

8.
84

83
7.

85
83

7.
07

E
10

1-
08

e
82

6.
14

85
3.

20
62

.3
83

5.
20

95
.3

82
9.

84
13

9.
8

82
9.

84
27

9.
0

82
9.

84
56

4.
6

83
0.

18
82

9.
38

82
9.

02
82

7.
49

E
15

1-
12

c
1,

02
8.

42
1,

07
0.

90
20

7.
1

1,
05

5.
10

41
1.

2
1,

04
0.

18
14

2.
8

1,
04

0.
18

29
5.

8
1,

04
0.

18
60

6.
6

1,
04

0.
40

1,
03

7.
50

1,
03

5.
55

1,
03

2.
65

E
20

0-
17

c
1,

29
1.

29
1,

33
0.

30
41

0.
3

1,
34

8.
80

80
9.

2
1,

33
0.

06
15

0.
6

1,
31

8.
38

29
7.

6
1,

31
3.

96
61

2.
0

1,
32

5.
55

1,
32

3.
10

1,
31

8.
71

1,
31

2.
82

E
12

1-
07

c
1,

04
2.

11
1,

04
4.

65
12

6.
5

1,
04

3.
80

64
.9

1,
04

8.
37

12
5.

4
1,

04
8.

37
24

2.
4

1,
04

8.
67

49
9.

8
1,

04
3.

57
1,

04
3.

30
1,

04
2.

85
1,

04
2.

34

E
10

1-
10

c
81

9.
56

81
9.

60
76

.7
82

2.
00

34
.9

81
9.

56
12

9.
6

81
9.

56
27

2.
4

81
9.

56
55

8.
6

81
9.

56
81

9.
56

81
9.

56
81

9.
56

E
24

1-
22

k
70

7.
79

74
3.

80
30

6.
4

74
1.

20
80

5.
8

72
3.

54
15

9.
6

72
0.

09
31

8.
6

71
9.

71
65

8.
2

72
6.

52
72

3.
26

72
1.

54
71

9.
86

E
48

4-
19

k
1,

10
7.

19
1,

20
4.

10
2,

05
5.

9
1,

14
8.

90
6,

45
9.

7
1,

20
2.

67
27

4.
8

1,
18

1.
66

53
8.

2
1,

17
3.

37
1,

08
7.

8
1,

19
3.

67
1,

18
3.

96
1,

17
0.

14
1,

15
5.

93

A
vg

(d
ev

%
)

2.
82

2.
12

1.
88

1.
45

1.
32

1.
74

1.
51

1.
24

0.
95

A
vg

(s
)

36
9.

33
96

8.
70

15
2.

67
30

5.
00

62
6.

93
30

0
60

0
1,

20
0

3,
60

0

E
07

2-
04

f
23

7.
00

24
4.

80
11

.4
24

1.
90

28
.0

24
1.

97
24

1.
97

24
1.

97
24

1.
97

E
07

6-
08

s
73

5.
00

74
9.

50
32

.6
74

7.
90

22
.6

74
2.

76
74

1.
46

74
0.

66
74

0.
66

E
07

6-
07

u
68

2.
00

69
0.

80
27

.9
69

0.
20

29
.5

68
9.

34
68

9.
34

68
9.

34
68

8.
47

E
13

5-
07

f
1,

16
2.

00
1,

16
5.

60
16

0.
2

1,
17

9.
21

14
0.

7
1,

16
8.

98
1,

16
8.

82
1,

16
7.

88
1,

16
6.

90

A
vg

(d
ev

%
)

1.
72

1.
63

1.
21

1.
16

1.
11

1.
06

A
vg

(s
)

58
.0

3
55

.2
0

30
0

60
0

1,
20

0
3,

60
0

E
25

3-
27

k
85

9.
11

89
4.

49
14

6.
4

89
3.

61
29

5.
2

88
5.

03
60

5.
4

89
3.

07
88

7.
20

88
5.

59
88

1.
50

E
25

6-
14

k
58

3.
39

61
4.

28
19

9.
8

60
9.

85
38

6.
4

60
5.

65
78

3.
6

60
9.

58
60

3.
53

59
8.

19
59

4.
83

E
30

1-
28

k
99

8.
73

1,
04

4.
25

17
5.

2
1,

04
1.

95
33

7.
8

1,
03

6.
22

70
2.

0
1,

02
5.

84
1,

01
7.

32
1,

01
4.

78
1,

00
7.

91

123

U. Derigs et al.

Ta
bl

e
8

co
nt

in
ue

d

In
st

an
ce

V
R

P
E

lF
al

la
hi

et
al

.(
20

08
)

M
uy

ld
er

m
an

s
an

d
Pa

ng
(2

00
7)

D
er

ig
s

et
al

.

M
A

T
S

G
L

S
(3

00
k)

G
L

S
(6

00
k)

G
L

S
(1

20
0k

)
5

m
in

10
m

in
20

m
in

60
m

in

C
os

t
C

os
t

T
im

e
C

os
t

T
im

e
C

os
t

T
im

e
C

os
t

T
im

e
C

os
t

T
im

e
C

os
t

C
os

t
C

os
t

C
os

t

E
32

1-
30

k
1,

08
1.

31
1,

13
5.

24
15

2.
4

1,
13

4.
19

30
3.

6
1,

12
5.

75
61

9.
2

1,
13

1.
31

1,
12

4.
88

1,
11

8.
21

1,
11

5.
21

E
32

4-
16

k
74

2.
03

77
8.

48
21

4.
8

77
0.

98
41

4.
6

77
0.

98
84

8.
4

77
9.

42
77

3.
19

76
5.

32
75

7.
41

E
36

1-
33

k
1,

36
6.

86
1,

41
0.

56
18

1.
2

1,
41

0.
13

36
1.

8
1,

40
4.

58
73

8.
0

1,
41

7.
41

1,
41

1.
92

1,
40

9.
38

1,
39

7.
19

E
39

7-
34

k
1,

34
5.

23
1,

40
5.

56
16

2.
6

1,
40

5.
56

31
7.

4
1,

40
5.

56
64

6.
8

1,
41

3.
82

1,
39

7.
53

1,
39

2.
35

1,
38

9.
30

E
40

0-
18

k
91

8.
45

96
7.

55
23

7.
0

96
5.

57
45

9.
6

96
5.

56
94

0.
2

98
0.

91
96

7.
43

95
9.

51
95

0.
99

E
42

1-
41

k
1,

82
1.

15
1,

90
0.

11
19

9.
8

1,
89

7.
76

39
7.

2
1,

89
7.

76
80

8.
8

1,
92

2.
49

1,
90

4.
67

1,
89

4.
42

1,
87

2.
02

E
48

1-
38

k
1,

62
2.

69
1,

70
0.

18
17

2.
2

1,
69

5.
27

33
9.

6
1,

69
1.

45
68

1.
0

1,
72

2.
43

1,
70

9.
22

1,
69

3.
94

1,
68

5.
70

A
vg

(d
ev

%
)

4.
60

4.
31

3.
94

4.
81

3.
92

3.
33

2.
64

A
vg

(s
)

18
4.

14
36

1.
32

73
7.

34
30

0
60

0
1,

20
0

3,
60

0

123

Vehicle routing with compartments

Table 9 Results for original VRP instances

Instance VRP Derigs et al.

10 min 20 min 60 min

Cost Cost Cost Cost

E051-05e 524.61 531.90 531.90 524.61

E076-10e 835.26 838.17 838.17 835.26

E101-08e 826.14 830.94 829.25 826.14

E151-12c 1,028.42 1,041.99 1,041.99 1,033.54

E200-17c 1,291.29 1,331.38 1,320.24 1,309.42

E121-07c 1,042.11 1,042.81 1,042.12 1,042.12

E101-10c 819.56 819.56 819.56 819.56

E241-22k 707.79 730.28 729.31 728.15

E484-19k 1,107.19 1,182.41 1,176.64 1,173.32

E072-04f 237.00 241.97 241.97 241.97

E076-08s 735.00 740.66 740.66 740.66

E076-07u 682.00 688.47 687.60 687.60

E135-07f 1,162.00 1,167.31 1,166.84 1,166.56

Avg (dev %) 1.62 1.47 1.14

class of VRPC-instances, i.e. the number of compartments and products is not lim-
ited to two; we allow variable and fixed compartment capacities as well as complex
incompatibility constraints.

Finally, we have analysed the behaviour of our VRPC implementation for solving
standard VRP instances, i.e. we have interpreted VRP data sets as VRPC instances
with one product type and one compartment which is a valid input for our implemen-
tation. Table 9 shows that we are able to produce solutions with a deviation from the
best-known VRP solutions around 1% after only 10 min of running time. This result
does not only document that our implementation performs well on VRP instances, but
it also supports the hypothesis that adopting and specializing methods like (A)LNS
with move-operators which have been shown to be successful on VRP to richer VRP
classes by proper implementation of feasibility checks for the additional constraints
is a promising approach.

6 Conclusions

We have motivated the vehicle routing problem with compartments (VRPC) and pre-
sented a problem statement covering scenarios from different industries, namely dis-
tribution of petrol and food. We have provided an integer program formulation and
discussed its extensibility towards further scenario enrichments.

A benchmark suite of 200 VRPC instances has been created and is available on
http://www.ccdss.org/vrp. The benchmark suite contains instances with varying prob-
lem characteristics, like the number of customers, the distribution of customers, the

123

http://www.ccdss.org/vrp

U. Derigs et al.

product distribution and the vehicle capacity. The instances are specifically designed
to resemble scenarios taken from the distribution of food and petrol, which is reflected
by additional problem characteristics like the number of compartments, the compart-
ments’ capacities and the incompatibilities between products and between products
and compartments. The generated instances shall serve the vehicle routing community
as benchmark suite for the VRPC.

We have implemented a portfolio of different heuristic components for solving the
VRPC. Our solver suite covers a broad range of alternative approaches for construc-
tion (e.g. greedy insertion, Sweep, Savings), local search (2-opt, Or-opt, 2-opt*) and
large neighbourhood search (order- and vehicle-based removal operators, greedy and
regret-based insertion) as well as diverse meta-heuristics like Simulated Annealing,
Record-to-Record Travel and Tabu Search. Many of the considered move operators are
popular in vehicle routing, yet they had to be adapted to the specifics of the VRPC, in
particular the solution representation which is order-based rather than customer-based
and has to store the compartment assignments. Furthermore, we also considered some
new operators like the vehicle-based removals.

Since our solver suite can be instantiated to a huge number of solution algorithms
for the VRPC, we designed a series of experiments in order to identify a good algo-
rithm for the VRPC as well as algorithmic components that are essential for good
solution quality. The empirical results revealed that the considered algorithms are not
sensitive to the structural difference of instances from petrol industry and food distri-
bution. All diversification and intensification concepts are essential for obtaining the
best solution quality. If the set of operators is chosen appropriately, then the adaption
strategy (including noise) that chooses the operators based on their past performance
is not necessary. Regarding construction algorithms, the best strategy is to generate
different solutions and select the best for the subsequent optimization process. The
choice of meta-heuristic control has a limited impact on the solution quality.

The comparison with the algorithms by El Fallahi et al. (2008) and Muyldermans
and Pang (2007) showed that our algorithm which is designed for a more general class
of VRPC instances is competitive on their specific problem instances. It is slightly
better and faster than El Fallahi et al. (2008) but somewhat slower than Muyldermans
and Pang (2007) for the smaller instances. After all, we were able to produce better
solutions on most of the 23 considered instances within 20 min and on all but one
instance within 60 min.

There are several opportunities for further research regarding the vehicle routing
problem with compartments. The integer program formulation was not the primary
focus of our work and can therefore certainly be improved. Our algorithms were
compared empirically by average solution quality on 200 instances. It would be inter-
esting to study the impact of instance characteristics on solution quality in more detail.
Moreover, a search space analysis of the instances regarding specific neighbourhoods
could provide further insight into obtained solution quality, cf. (Hoos and Stützle
2004). While the motivation of our algorithmic development was to study the exten-
sion of our earlier VRP-implementations to this specific richer class, the application
of other strategies like variable neighbourhood search (cf. Mladenović and Hansen
1997) or iterated local search (cf. Lourenço et al. 2002) for combining the different
neighbourhoods could be of interest as well as the study of population-based

123

Vehicle routing with compartments

approaches like evolutionary algorithms (cf. Michalewicz 1996), memetic algorithms
(cf. Moscato 1999) or scatter search (cf. Glover et al. 2000).

The presented VRPC model is a basis for further extensions towards real-world
scenarios involving compartments. Therefore, besides studying our model in more
detail, the following extensions present interesting avenues for further studies: opti-
mized splitting of an order to allow delivering one order in several compartments and
considering vehicles with different compartment setups (number of compartments and
capacities of compartments) in one model.

References

Archetti C, Speranza M, Hertz A (2006) A tabu search algorithm for the split delivery vehicle routing
problem. Transp Sci 40(1):64–73

Avella P, Boccia M, Sforza A (2004) Solving a fuel delivery problem by heuristic and exact approaches.
Eur J Oper Res 152(1):170–179

Bartodziej P, Derigs U, Malcherek D, Vogel U (2009) Models and algorithms for solving combined vehicle
and crew scheduling problems with rest constraints: an application to road feeder service planning in
air cargo transportation. OR Spectr 31(2):405–429

Brown G, Graves G (1981) Real-time dispatch of petroleum tank trucks. Manag Sci 27(1):19–32
Chajakis E, Guignard M (2003) Scheduling deliveries in vehicles with multiple compartments. J Glob

Optim 26(1):43–78
Christofides N, Mingozzi A, Toth P (1979) The vehicle routing problem. In: Christofides N, Mingozzi A,

Toth P, Sandi C (eds) Combinatorial optimization. Wiley, Chichester, pp 315–338
Clarke G, Wright J (1964) Scheduling of vehicles from a central depot to a number of delivery points. Oper

Res 12:568–581
Cordeau J-F, Gendreau M, Laporte G, Potvin J-Y, Semet F (2002) A guide to vehicle routing heuristics.

J Oper Res Soc 53:512–522
Cordeau J-F, Gendreau M, Hertz A, Laporte G, Sormany J (2005) New heuristics for the vehicle routing

problem. In: Langevin A, Riopel D (eds) Logistic systems: design and optimization. Wiley, Chichester,
pp 279–298

Cornillier F, Boctor F, Laporte G, Renaud J (2008) A heuristic for the multi-period petrol station replenish-
ment problem. Eur J Oper Res 191(2):295–305

Derigs U, Kaiser R (2007) Applying the attribute based hill climber heuristic to the vehicle routing problem.
Eur J Oper Res 177(2):719–732

Derigs U, Li B, Vogel U (2009) Local search-based metaheuristics for the split delivery vehicle routing
problem. J Oper Res Soc. doi:10.1057/jors.2009.100

Derigs U, Reuter K (2009) A simple and efficient tabu search heuristic for solving the open vehicle routing
problem. J Oper Res Soc 60:1658–1669

Derigs U, Vogel U (2009) A computational study on neighborhood search heuristics for the open vehicle
routing problem with time windows. In: MIC 2009: the VIII metaheuristics international conference

Dror M, Trudeau P (1989) Savings by split delivery routing. Transp Sci 23(2):141–145
Dueck G (1993) New optimization heuristics. J Comput Phys 104(1):86–92
Eilon S, Watson-Gandy C, Christofides N (1971) Distribution management: mathematical modelling and

practical analysis. Griffin, London
El Fallahi A, Prins C, Wolfler Calvo R (2008) A memetic algorithm and a tabu search for the multi-

compartment vehicle routing problem. Comput Oper Res 35(5):1725–1741
Fagerholt K, Christiansen M (2000) A combined ship scheduling and allocation problem. J Oper Res Soc

51(7):834–842
Gillett BE, Miller LR (1974) A heuristic algorithm for the vehicle-dispatch problem. Oper Res 22(2):340–

349
Glover F (1989) Tabu search—part I. ORSA J Comput 1(3):190–206
Glover F (1990) Tabu search—part II. ORSA J Comput 2(1):4–32
Glover F, Laguna M, Marti R (2000) Fundamentals of scatter search and path relinking. Control Cybern

39(3):653–684

123

http://dx.doi.org/10.1057/jors.2009.100

U. Derigs et al.

Hoos HH, Stützle T (2004) Stochastic local search. Foundations and applications. Elsevier/Morgan Kauf-
mann, San Francisco

Jetlund AS, Karimi IA (2004) Improving the logistics of multi-compartment chemical tankers. Comput
Chem Eng 28:1267–1283

Kalkoff J (2006) Generierung von Benchmarks und empirische Analyse von Metaheuristiken für Tour-
enplanungsprobleme mit teilbaren Frachträumen. Diplomarbeit, Lehrstuhl für Wirtschaftsinformatik
I, Universität Mannheim

Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680
Lin S, Kernighan B (1973) An effective heuristic algorithm for the traveling-salesman problem. Oper Res

21(2):498–516
Lourenço H, Martin O, Stützle T (2002) Iterated local search. In: Glover F, Kochenberger G (eds) Handbook

of metaheuristics. Kluwer, Norwell, pp 321–353
Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs, 3rd edn. Springer, Berlin
Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24(11):1097–1100
Moscato P (1999) Memetic algorithms: a short introduction. In: Corne D, Dorigo M, Glover F (eds) New

ideas in optimization. McGraw-Hill, London, pp 219–234
Muyldermans L, Pang G (2007) On the benefits of co-collection: experiments with a multi-compartment

vehicle routing algorithm (submitted)
Or I (1976) Traveling salesman-type combinatorial problems and their relation to the logistics of blood

banking. Ph.D. thesis, Department of Industrial Engineering and Management Sciences, Northwest-
ern University

Piesche M (2007) Entwicklung und Praxistest leistungsfähiger Meta-Heuristiken für das Vehicle Routing
Problem mit teilbaren Frachträumen. Diplomarbeit, Seminar für Wirtschaftsinformatik und Operations
Research, Universität zu Köln

Pisinger D, Ropke S (2007) A general heuristic for vehicle routing problems. Comput Oper Res 34(8):2403–
2435

Potvin J-Y, Rousseau J-M (1995) An exchange heuristic for routing problems with time windows. J Oper
Res Soc 46(12):1433–1446

Ropke S, Pisinger D (2006) An adaptive large neighborhood search heuristic for the pickup and delivery
problem with time windows. Transp Sci 40(4):455–472

Schrimpf G, Schneider J, Stamm-Wilbrandt H, Dueck G (2000) Record breaking optimization results using
the ruin and recreate principle. J Comput Phys 159:139–171

Shaw P (1998a) A new local search algorithm providing high quality solutions to vehicle routing problems.
Technical report, APES group

Shaw P (1998b) Using constraint programming and local search methods to solve vehicle routing prob-
lems. In: Proceedings CP-98 fourth international conference on principles and practice of constraint
programming

Toth P, Vigo D (2002) The vehicle routing problem. SIAM
Van der Bruggen L, Gruson R, Salomon M (1995) Reconsidering the distribution structure of gasoline

products for a large oil company. Eur J Oper Res 81(3):460–473
Whittley I, Smith G (2004) The attribute based hill climber. J Math Model Algorithm 3(2):167–178

123

	Vehicle routing with compartments: applications, modelling and heuristics
	Abstract
	1 Introduction
	2 The vehicle routing problem with compartments
	2.1 Problem formulation
	2.2 Integer program formulation
	2.3 Discussion

	3 The benchmark suite for VRPC
	3.1 General problem structure
	3.2 Specific problem structure for petrol and food scenarios

	4 The heuristic solver suite for VRPC
	4.1 Intensification: local search
	4.2 Diversification: large neighbourhood search
	4.3 Adaptive search
	4.4 Construction heuristics
	4.5 Meta-heuristics

	5 Empirical results
	5.1 Computational tests on the VRPC benchmark suite
	5.2 Results on the instances from the literature

	6 Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

