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Edge Orientation and the Design of
problem-specific EAs for the OCST problem

Wolfgang Steitz and Franz Rothlauf, Member, IEEE

Abstract—We study the Euclidean variant of the optimal
communication spanning tree (OCST) problem. An experimental
analysis reveals that edges in optimal trees do not have only low
distance weights but also point with higher probability towards
the graph’s center. We use this characteristic of optimal solutions
for the design of problem-specific evolutionary algorithms (EAs).
We extend recombination operators of direct encodings like edge-
set and NetDir such that they prefer not only edges with low
distance weights but also edges that point towards the center
of the graph. Experimental results show higher performance
and robustness in comparison to EAs using existing crossover
strategies.

Index Terms—optimal communications spanning tree problem,
edge-set, NetDir, problem analysis, systematic design.

I. INTRODUCTION

THE OPTIMAL COMMUNICATION spanning tree
(OCST) problem [1] is an NP-hard combinatorial op-

timization problem which seeks a spanning tree that satis-
fies all communication requirements at minimum total cost.
Researchers have studied various solution approaches for the
problem [2], [3]. Current state-of-the-art approaches for solv-
ing OCST problems are based on heuristics and metaheuristics,
in particular evolutionary algorithms (EA).

The edge-set encoding [4] is a direct representation for
trees which encodes trees as sets of edges and uses encoding-
specific search operators to generate candidate solutions.
Search operators for edge-sets are either heuristic and rely on
edge weights, or non-heuristic. Both, mutation and crossover,
are based on a randomized version of Kruskal’s algorithm.
Another direct representation for OCST problems is the Net-
Dir encoding [2]. The encoding’s crossover operator copies
subtrees from parents to offspring. In the original specification,
no heuristics are incorporated into the search operators.

High-quality solutions to Euclidean OCST problem in-
stances contain disproportionately many edges that point
towards the centers of their trees. We make use of this
observation and systematically design problem-specific EAs.
We develop efficient recombination operators for edge-set and
NetDir encoding, such that not only distance weights but
also edge orientation are used for constructing offspring trees.
Experimental results reveal improved EA performance.

The main findings of this paper are:
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1) Edges pointing toward the graphs’ centers are overrep-
resented in good solutions to Euclidean OCST problem
instances.

2) Greedy heuristic search performs best when edge inser-
tion is controlled by a weighted combination of distance
weights and edge orientation. Search performance can
be further improved if orientation is neglected for edges
next to the graph’s center.

3) EAs using direct encodings like edge-set or NetDir
encoding show the highest performance if both edge
properties, weight and orientation, are considered for
edge-selection in the recombination operator.

The following paragraphs define OCST problems, present
properties of optimal solutions, list various OCST test in-
stances, and describe how to determine optimal solutions for
small problem instances. In Section II-C, we study edge orien-
tation in optimal solutions. Section III develops recombination
operators that consider edge weights and orientation for edge-
set and NetDir encodings. Section IV studies EA performance
for different types of test instances.

II. THE OCST PROBLEM

A. Problem Definition

The OCST problem introduced by Hu [1] is a common
combinatorial tree optimization problem. Given a distance and
a demand matrix, it seeks a spanning tree which connects all
given nodes and satisfies their communication requirements
for minimum total cost.

Let G = (V,E) be a weighted, undirected graph with n =
|V | nodes and m = |E| edges. Communication or transport
requirements are given a priori in an n × n demand matrix
R = (rij). Analogously, an n × n distance weight matrix
W = (wij) specifies distance weights. In the Euclidean case,
the distance weights are the Euclidean distances between the
nodes. The weight w(T ) of a tree T = (V, F ) with F ⊆ E
and |F | = n− 1 is

w(T ) =
∑
i,j∈V

rijplij , (1)

where plij denotes the path length between nodes i and j
which is calculated as the sum of the weights of all edges
on the path between i and j. It depends on the structure of
T and the distance matrix W . For spanning trees there exists
only one unique path between any pair of nodes and the path
length pl can be determined using a depth first search. T is
the optimal communication spanning tree, if w(T ) ≤ w(T ′)
for all other spanning trees w(T ′).
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The OCST problem is NP-hard [5, p. 207]. Furthermore,
Reshef [6] showed that the problem is MAX SNP-hard.
Therefore, no polynomial-time approximation scheme exists,
unless NP = P [7]. Exact polynomial-time algorithms exist
only for the restricted version of the problem [8]. Various
approximation algorithms have been developed [9]–[11]; how-
ever, due to the MAX SNP-hardness of the problem the
solution quality of such approximation algorithms is limited.
Many heuristics, especially EAs, have been developed [4],
[12]–[16]. For an overview of EAs for the OCST problem,
see Rothlauf [2].

To measure the difference between two spanning trees Ti

and Tj , we count the number of edges that do not exist in
both trees. Thus, the distance dij ∈ {0, 1, . . . , n − 1} can be
calculated as

dij =
1

2

∑
u,v∈V,u<v

|eiuv − ejuv|, (2)

where eiuv = 1 if edge euv is included in Ti and eiuv = 0 if
not.

B. Experimental Design

In our studies, we follow Raidl and Julstrom [4] and use
randomly created OCST test instances. For our test instances,
real-valued distance weights wij are Euclidean distances be-
tween nodes i and j which are randomly placed on a 2-
dimensional grid of size 10× 10.

We use two different types of demand. First, real-valued
demands rij are randomly created and uniformly distributed in
]0, 10]. Second, to create more realistic demand distributions,
we create random demands following the Zipf distribution
[17], a power law probability distribution. Many natural
phenomena like Internet traffic, population distribution and
word usage [18], [19] can be characterized by power law
distributions. A discrete Zipf distribution is described by:

Pz(x) =
1

xz
∗ 1∑N

i=1
1
iz

, (3)

where Pz denotes the probability of x ∈ {1, 2, . . . , N}. We
use Zipf distributed demands with z = 1 and N = 10.

For finding optimal, or at least near-optimal solutions of
OCST problems, we use a mathematical programming solver
for small problem instances with n ≤ 12 and a GA for larger
problem instances. The OCST problems are modeled as an
integer linear program [20], and CPLEX 10.2 is able to solve
all problem instances with n ≤ 12 in a reasonable time.

The situation is different for larger problem instances (n >
12), which cannot be solved by CPLEX in reasonable time.
Therefore, we use an iterative GA for such problems. We
choose the GA design in such a way that we can assume
that the solution found is optimal or near-optimal. We start
the iterative GA by applying a standard GA niter times to an
OCST problem using a population size of N0. Then, T best

0

denotes the best solution that is found during the niter runs.
In a second round, we again apply a GA niter times with
N1 = 2N0 which finds the best solution T best

1 . We continue
the iterations and double the population size Ni = 2Ni−1 until

T best
i = T best

i−1 and n(T best
i )/niter > 0.5; this means T best

i is
found in more than 50% of the runs in round i. Then, n(T best

i )
denotes the number of runs that find the best solution T best

i

in round i.
For the experiments, we use a standard, generational GA

with crossover and mutation. For the encoding of trees, Net-
work Random Keys (NetKeys) [14] are used. NetKeys have
high locality [21], [22], which leads to high EA performance
[2], and are unbiased, which means that the encoding does
not favor a specific type of tree but the probability of finding
an optimal solution does not depend on its structure. The
GA uses uniform crossover and tournament selection without
replacement. The tournament size is three. Crossover proba-
bility is set to pc = 0.7 and mutation probability (assigning a
random value [0, 1] to one allele) is set to pm = 1/l, where
l = n(n− 1)2. The effort for finding optimal or near-optimal
solutions is high.

We construct uniformly random trees via Prüfer numbers
[23] using bijective mapping between Prüfer numbers and trees
[24, pp. 103-104]. By generating random Prüfer numbers, this
approach yields unbiased random spanning trees. In contrast,
randomized versions of Kruskal’s and Prim’s algorithms would
favor star-like trees [25].

C. Properties of Optimal Solutions
Optimal solutions for OCST problems are biased towards

MSTs [26]. Therefore, average distances between optimal
solutions and MSTs are significantly smaller than distances
between optimal solutions and random trees. The performance
of heuristic optimization methods can be increased by biasing
search operators towards MST-like solutions. Edge-sets using
heuristic search operators [4], [27] make use of this fact by
preferring edges with low distance weights [28].

We study below the orientation of edges in optimal solutions
to identify additional properties of high-quality solutions. We
find that edges directed towards a graph’s center are overrep-
resented in optimal solutions. Such edges lead to shorter paths
and hence to a lower cost solution.

How can we explain this observation? Kershenbaum [29]
noticed that it is useful to run more traffic over nodes near the
center of a tree than over nodes far away from the center.
He distinguished between interior nodes (some traffic only
transits) and leaf nodes (all traffic terminates). Consequently,
edges near the tree’s center carry much transit traffic whereas
edges far away from the center carry almost no transit traffic.
To construct a tree by favoring edges pointing towards the
center yields trees of lower cost since such edges are the
shortest connection from leaf nodes to interior nodes. Traffic
originating from leaf nodes is directly routed to the center
and from there to other parts of the tree. Therefore, it is more
promising to connect leaf nodes to interior nodes using edges
that point towards the center instead of connecting leaf nodes
with other leaf nodes using tangential edges. In addition, it
makes sense to consider only the orientation of edges that are
some distance from the center of a tree since the orientation
of edges connecting interior nodes is meaningless.

Figure 1 illustrates edge orientation. The orientation of an
edge eij is the angle γ ∈ [0, 90] between eij and the line
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Fig. 1. Orientation of an edge eij
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(a) n = 15, uniform demands
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(b) n = 15, Zipf demands
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(c) n = 20, uniform demands
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(d) n = 20, Zipf demands

Fig. 2. Distribution of orientation γ for optimal solutions, random solutions,
and MSTs for 1000 randomly generated OCST instances with n = 15 and
n = 20 nodes and different demand distributions.

connecting the midpoint of eij and the center C of the tree. C
is calculated as the average x-coordinates and y-coordinates
of all nodes. Since γ ≤ 90, the lower angle is chosen (γ =
min(γ1, γ2)). For edges directly pointing to the center, γ = 0.

We compare edge orientation for optimal solutions, ran-
domly created spanning trees, and MSTs. For each problem
size, we create 1000 random Euclidean OCST test instances
(compare Section II-B). For each OCST instance, we generate
10,000 random trees, calculate an MST, and determine an
optimal (or near-optimal) solution as described in Section II-B.

Figure 2 presents results for n = 15 (Figs. 2a and 2b) and
n = 20 (Figs. 2c and 2d). The demands are either uniformly
distributed (Figs. 2a and 2c) or Zipf distributed (Figs. 2b
and 2d). We plot the distribution of γ for optimal solutions
(“optimal”), random solutions (“random”), and MSTs (“mst”).
If the distribution is approximately uniform, orientation does
not matter and all angles γ occur with approximately the same
probability in a tree. For random trees, edges with larger γ
are slightly preferred. For MSTs, edge orientation is of less

importance and γ is approximately uniformly distributed. For
optimal solutions, γ is non-uniformly distributed since edges
with low γ occur more often. For n = 20, approximately
20% of all edges of optimal solutions have edge orientation
γ ≤ 10 whereas only approximately 4% of all edges have γ >
80. These results support the hypothesis that edges pointing
towards the center of a tree are preferred in optimal solutions.

III. PROBLEM-SPECIFIC EAS FOR OCST PROBLEMS

Optimal solutions have a bias towards edges with low γ for
both demand distributions, uniform and Zipf. We investigate
whether heuristic optimization methods can make use of this
observation by favoring edges with low distance weight and
low orientation γ.

A. Direct Representations for Trees

1) Edge-set: The edge-set (ES) encoding [4], [27] is a
direct representation which encodes trees as sets of edges.
ES operators are either heuristic considering edge weights, or
non-heuristic. Heuristic crossover operators result in higher
performance in comparison to non-heuristic operators [4],
[28].

Crossover creates an offspring from two parental trees
T1 = (G,E1) and T2 = (G,E2) by iteratively selecting edges
from F = (E1∪E2). Therefore, offspring trees exist consisting
solely of parental edges. Crossover operators differ accord-
ing to the strategy used for selecting and inserting parental
edges into offspring. Julstrom and Raidl [30] studied several
edge-selection strategies: tournament, greedy, inverse weight
proportional, and random edge-selection. Results indicate that
edge-selection using tournaments leads to the highest and
most robust EA performance [30], [31]. n-tournament edge-
selection iteratively selects n edges, compares the associated
edge weights, and inserts the edge with lowest weight into the
offspring. This strategy has a bias towards low-weighted edges
and MSTs [4], [28]. To strengthen the inheritance of common
features from parents to offspring, edge-selection strategies
can be designed as *-strategies [4]. Then, all edges (E1∩E2)
are included in the offspring and remaining edges are selected
from F \ (E1 ∩E2) using an edge-selection strategy.

2) NetDir: The NetDir encoding [2, Sect. 7.1] is a direct
representation for trees, similar to ES. Originally, Rothlauf [2]
proposed only non-heuristic crossover and mutation operators.
We extend this work in this paper and propose heuristic
crossover operators which incorporate problem-specific knowl-
edge.

NetDir crossover [2] creates two offspring Go1 = (V,Eo1)
and Go2 = (V,Eo2) from two parental trees G1 = (V,E1)
and G2 = (V,E2) in two steps. The first step splits the
nodes V into two disjoint sets V1 and V2. All edges in E1

connecting nodes either in V1 or V2 are inserted into Go1 or
Go2, respectively. Analogously, all edges in E2 connecting
nodes either in V1 or V2 are inserted into Go2 and Go1,
respectively. The second step completes the two offspring
by iteratively inserting randomly selected parental edges until
each offspring consists of n− 1 edges.
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The crossover operator can easily be extended by modifying
the second step. Instead of randomly selecting edges, we
propose using an edge-selection strategy that considers edge
weights. The resulting heuristic crossover operator has similar
properties to heuristic crossover operators for ES and is also
biased towards MSTs.

3) Differences: ES and NetDir are similar but differ with
respect to selection of edges that are transferred from parent
to offspring. ES crossover does not transfer any subtrees to
offspring but iteratively builds offspring from parental edges
by adding single edges. In contrast, NetDir splits nodes into
two sets and transfers all edges as well as subtrees that exist
in one node set to an offspring. Therefore, NetDir crossover
is, in principle, able to transfer meaningful subtrees from
parent to offspring. However, the problem remains that there
is no possibility of partitioning the nodes in such a way that
meaningful subtrees are identified which can be transferred to
an offspring; instead nodes are randomly partitioned into two
sets.

B. Extending Crossover Operators

We bias the crossover operators to consider knowledge
about edge orientation. By biasing the operators, EAs are
expected to find near-optimal solutions faster and more often.
Thus, edges to be inserted into an offspring are not selected
at random or according to their distance weights alone, but
according to their weights and orientation. For this purpose,
we introduce the modified weight w′

ij of an edge eij . It
depends on the weight wij and orientation γij of an edge
and is defined as

w′
ij = αwij/wmax + (1− α)γij/γmax, (4)

where wij is the weight of eij , γij denotes the orientation of
eij , and α ∈ [0; 1] is a parameter that controls the influence of
wij and γij . Distance weights as well as edge orientation are
normalized using the maximum values wmax = max(wij)
(i, j = 1, . . . , n) and γmax = max(γij) (i, j = 1, . . . , n).
Therefore, w′

ij ∈ [0, 1].
Since edge orientation becomes meaningless if an edge is

located near to the center of a tree, we introduce w′′
ij . We

consider edge orientation only if the distance d(ij),C between
an edge eij and the center C of a graph (see Fig. 1) exceeds
a predefined value. It is calculated as

w′′
ij =

{
w′

ij if dist(i,j),C/distmax ≥ β

wij/wmax else,
(5)

where distmax = max(i,j) d(i,j),C .
For ES as well as NetDir, edge-selection mechanisms can

use w′′
ij instead of wij for evaluating and selecting edges. With

lower w′′
ij , the probability of an edge eij being included in an

offspring increases. For α = 1, only distance weights wij are
considered and we obtain the original ES crossover operator
(see Sect. III-A1). For α < 1, edge orientation influences the
probabilities of edges being included in an offspring and edges
pointing towards the center of a tree are preferred.
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Fig. 3. Average distance ds,opt between trees Ts generated by a greedy
selection strategy and optimal solutions Topt over α for randomly generated
OCST instances with 10, 15, and 20 nodes.

C. Balancing Weight and Orientation

This section neglects all crossover steps that do not con-
sider edge weights (like transferring all common edges to
an offspring in *-strategies) but focus only on edge-selection
strategies. We examine how performance of a greedy selection
strategy depends on α and β. Although the experiments
explored all possible combinations of α and β, due to space
restrictions, Figs. 3 and 4 present only the most promising
combination. The greedy selection strategy starts with an
empty tree and iteratively adds edges with minimum weight
w′′

ij until it is fully connected. Edges are taken from E; edges
that would lead to cycles are omitted. For α = 1, the greedy
selection strategy creates an MST.

The quality of a solution created by the greedy selection
strategy is determined by how closely it approaches an optimal
solution. We present results for 100 random OCST problems
with 10, 15, and 20 nodes. Optimal solutions are determined
according to Section II-B.

Figure 3 shows the average distance ds,opt between trees Ts

created by a greedy selection strategy and optimal solutions
Topt over α. The value of β is set to zero. Mean values are
plotted as bold lines; standard deviations are plotted as regular
lines. Results are consistent for different n. For α = 1, an MST
is created and, thus, ds,opt is the average distance between
MSTs and optimal trees. Solution quality increases for α ≈
0.7 − 0.8. Therefore, when both properties, orientation and
distance weight, are considered, the greedy selection strategy
can create better solutions. Finally, with lower values of α,
ds,opt increases. Considering only orientation (α = 0) results
in worse solutions than considering only distance weights (α =
1).

Next, we show how the performance of a greedy selection
strategy using w′′ depends on β. Figure 4 shows the average
distance ds,opt over β. The value of α is constant and set to
α = 0.7. Again, mean values are plotted as bold lines and
standard deviations as regular lines. For β = 1, the greedy
selection strategy creates MSTs. For β = 0, the resulting ds,opt
are equivalent to the lowest distances found in Figure 3. For
β ≈ 0.3, better solutions more closely approaching optimal
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Fig. 4. Average distance ds,opt between trees Ts generated by a greedy
strategy and optimal solutions Topt over β for randomly generated OCST
instances with 15 and 20 nodes. The greedy algorithm subsequently inserts
edges into a tree starting with edges of low w′′

ij .

trees can be obtained. Therefore, greedy selection strategies
create better solutions if orientation is considered only for
edges which are some distance from the tree center.

We recommend considering distance weights as well as edge
orientation, when constructing a tree by iteratively appending
edges. Orientation should not be considered for edges near the
tree center. In particular, we recommend setting α = 0.7 and
β = 0.3.

IV. PERFORMANCE OF EAS USING THE EXTENDED
OPERATOR

We compare the performance of EAs considering distance
weights and edge orientation in edge-set and NetDir. We start
with small problem instances where optimal (or near-optimal)
solutions are determined as described in Section II-B and
continue with larger problem instances with unknown optimal
solutions. Following previous work [4], [28] we use randomly
created OCST test instances.

A. Small Problem Instances

We use a basic steady-state EA with non-heuristic initial-
ization and mutation [2], [4]. The population size is 50. In
each search step, either one (ES) or two (NetDir) offspring
are created by crossover (crossover probability pc = 1)
and edge-wise mutation (mutation probability pm = 1/n).
The two parents are selected at random. If the cost of an
offspring is lower than or equal to the cost of the worst
individual in the population (w(Toff ) ≤ max(w(Ti)) for
i ∈ {0, . . . , N − 1}), it replaces the worst individual in the
population. We present results for OCST instances of different
sizes n = {10, 12, 14, 16, 18, 20}, where the optimal solutions
are determined as described in Section II-B. The demands are
either uniformly distributed in ]0, 10] or Zipf distributed with
z = 1 and N = 10. Each EA run terminates after eval = 3000
fitness evaluations. For every problem size, 100 Euclidean
OCST instances are generated at random and for each problem
instance 20 EA runs are performed.

Both ES and NetDir select edges using either binary tourna-
ments with different settings of α and β or random selection
(denoted as RX), which results in an unbiased choice of
offspring edges. The setting α = 1, β = 0 is equivalent to
using heuristic crossover and non-heuristic mutation [4], [28].

Table I lists the percentage Psuc of runs that find Topt, the
average cost w(Tbest) of the best solution found Tbest, and
the standard deviation σ of w(Tbest) for the 100 instances.
We show results for binary tournaments with different values
of α and β, for random edge-selection, and for MSTs. The
best results are printed in bold.

EA performance increases if heuristic edge-selection not
only considers distance weights alone (α = 1) but also edge
orientation (α < 1). By neglecting edges next to the center
(β = 0.3), EA performance is further improved. The lowest
average costs w(Tbest) are observed for α = 0.7 and β = 0.3.
Results for ES and NetDir are consistent.

Previous results [28] indicate that performance of heuristic
ES is good if optimal solutions are similar to MSTs. Since
optimal solutions for OCST problems are biased towards
MSTs, ES performs well on many OCST problem instances.
However, with increasing distance dopt,mst between optimal
solutions and MSTs, EA performance drops sharply. We
expect that use of edge orientation as an additional selection
criterion improves the performance of heuristic ES for larger
dopt,mst. Fig. 5 shows Psuc and the gap w(Tbest)−w(Topt)

w(Topt)
(in

percent) over dopt,mst for 1000 random problem instances.
We present results only for instances of size n = 12 and
uniformly distributed demand. Results for other problem sizes
and Zipf demand distribution are analogous. For the 1000
problem instances, min(dopt,mst) = 1, max(dopt,mst) = 7.

EA performance using edge-set with α = 1 is high for
OCST instances with low dopt,mst. Since for these problem
instances optimal solutions are only a few edges different
from MSTs, selection strategies that are based on distance
weights alone are very successful. However, with increasing
dopt,mst, performance of EAs with α = 1 drops sharply
[28]. In contrast, EAs using heuristic crossover which also
consider edge orientation (α = 0.7) show better performance
for problems with larger dopt,mst. By analogy with Fig. 4,
EA performance increases when neglecting edges next to the
graph center (β = 0.3). Results for the gap w(Tbest)−w(Topt)

w(Topt)

are analogous to Psuc. In the figures, RX performs well
in comparison to the more complex heuristic approaches.
However, this is only the case for low n since the gap increases
with larger n (see in Tables III and IV).

Overall, EAs using edge-selection strategies with α = 1
perform well only if dopt,mst is low. With increasing dopt,mst,
edge-selection strategies that also consider edge orientation
show better performance. Use of edge-set or NetDir with edge-
selection strategies (α = 0.7, β = 0.3) yields in high and
robust EA performance.

B. Larger Problem Instances
We investigate larger OCST instances with unknown opti-

mal solutions. EA performance is measured using w(Tbest).
We use the same EA as in the previous experiments with

a larger population size of 200. Since a higher number of
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TABLE I
EA PERFORMANCE FOR SMALL PROBLEM INSTANCES

Edge-Set NetDir

n MST RX β = 0 β = 0.3 RX β = 0 β = 0.3
α=1 α=0.8 α=0.7 α=0.6 α=0.8 α=0.7 α=0.6 α=1 α=0.8 α=0.7 α=0.6 α=0.8 α=0.7 α=0.6

demand uniformly distributed in ]0,10]

10
Psuc - 0.89 0.77 0.88 0.88 0.83 0.9 0.9 0.87 0.88 0.87 0.9 0.9 0.89 0.91 0.91 0.9

w(Tbest) 1665.9 1489.9 1491.3 1490.0 1490.2 1491.0 1489.3 1489.3 1490.0 1490.1 1489.9 1489.6 1489.9 1490.0 1489.5 1489.4 1489.8
σ - 5 4.18 2.72 2.51 3.01 2.02 2.07 2.33 5.91 3.57 3.2 3.28 2.45 2.99 2.56 2.88

12
Psuc - 0.69 0.4 0.64 0.63 0.56 0.66 0.68 0.62 0.49 0.65 0.76 0.75 0.69 0.77 0.78 0.75

w(Tbest) 2519.1 2229.7 2234.3 2226.6 2227.2 2229.7 2225.8 2225.7 2227.5 2237.1 2228.9 2225.2 2225.9 2227.7 2224.9 2224.6 2225.6
σ - 17.19 11.03 6.79 6.89 7.98 5.91 5.45 6.56 25.41 12.65 8.57 8.82 9.88 8.14 7.44 8.06

14
Psuc - 0.41 0.16 0.36 0.4 0.33 0.39 0.43 0.39 0.13 0.38 0.57 0.53 0.46 0.6 0.59 0.55

w(Tbest) 3568.3 3132.0 3142.0 3123.6 3122.4 3128.2 3121.7 3119.9 3122.4 3167.7 3128.4 3118.7 3119.3 3123.8 3116.3 3116.8 3118.7
σ - 39.64 23.83 15.44 14.89 16.84 13.85 12.59 13.87 60.11 26.97 18.46 18.05 19.93 16.03 16.89 18.34

16
Psuc - 0.11 0.04 0.14 0.14 0.11 0.18 0.21 0.19 0.01 0.12 0.23 0.24 0.15 0.28 0.28 0.25

w(Tbest) 4839.3 4193.6 4191.4 4151.8 4155.6 4175.7 4147.2 4143.6 4152.3 4292.0 4175.8 4149.2 4154.1 4168.1 4146.3 4145.7 4150.4
σ - 76.44 41.41 27.63 30.9 36.86 27.1 24.12 24.3 121.53 57.2 38.72 42.17 47.59 41.72 39.24 39.25

18
Psuc - 0.02 0.03 0.09 0.08 0.05 0.1 0.1 0.08 0 0.05 0.12 0.11 0.07 0.14 0.14 0.13

w(Tbest) 6292.0 5505.6 5456.9 5376.9 5384.6 5423.5 5373.3 5365.6 5379.8 5709.9 5429.5 5384.2 5390.2 5421.8 5373.0 5370.2 5383.9
σ - 148.48 74.85 48.95 54.55 66.24 48.83 39.52 42.48 205 90.6 69.81 69.58 76.64 63.77 61.36 62.71

20
Psuc - 0 0 0.02 0.03 0.01 0.04 0.05 0.03 0 0.01 0.03 0.04 0.01 0.04 0.04 0.04

w(Tbest) 8006.8 7088.7 6934.7 6812.8 6817.0 6859.6 6802.8 6784.1 6794.0 7417.8 6940.1 6834.3 6830.6 6875.0 6829.8 6809.3 6812.0
σ - 237.66 102.45 74.59 74.73 90.45 69.18 58.36 52.72 315.24 152.83 114.76 110.27 117.46 112.65 93.06 95.82

demand Zipf distributed in [1,10]

10
Psuc - 0.87 0.77 0.82 0.83 0.8 0.83 0.81 0.79 0.81 0.85 0.87 0.88 0.84 0.88 0.86 0.84

w(Tbest) 1142.7 1018.5 1018.4 1018.2 1018.4 1018.8 1018.0 1018.4 1019.2 1019.7 1018.0 1018.0 1017.9 1018.4 1017.6 1018.2 1018.2
σ - 3.73 3.1 2.12 2.21 2.01 2.05 2.11 2.15 5.94 2.95 2.81 2.82 3.1 2.2 3 2.19

12
Psuc - 0.67 0.41 0.61 0.61 0.54 0.62 0.64 0.61 0.46 0.64 0.75 0.72 0.66 0.75 0.75 0.72

w(Tbest) 1698.9 1495.6 1498.3 1493.2 1493.9 1496.1 1492.9 1493.0 1494.2 1500.5 1494.7 1492.3 1492.8 1494.4 1492.1 1492.2 1492.9
σ - 11.84 8.02 4.57 5.03 6.13 4.31 4.07 4.72 16.56 8.99 6.23 6.35 7.29 5.91 5.64 5.78

14
Psuc - 0.39 0.18 0.4 0.43 0.35 0.42 0.46 0.39 0.13 0.38 0.56 0.54 0.46 0.55 0.55 0.53

w(Tbest) 2458.8 2163.7 2167.4 2155.1 2157.0 2161.8 2154.2 2153.2 2156.6 2187.8 2160.3 2152.6 2153.4 2157.4 2152.5 2152.1 2154.1
σ - 28.01 16.91 9.97 11.72 14.35 9.94 9.07 10.1 44.53 21.56 12.95 12.97 15.09 13.6 12.51 13.76

16
Psuc - 0.12 0.06 0.17 0.17 0.11 0.21 0.24 0.18 0.02 0.16 0.27 0.24 0.17 0.3 0.32 0.29

w(Tbest) 3321.0 2821.7 2819.8 2793.8 2795.1 2809.7 2789.4 2787.5 2794.0 2881.4 2807.5 2792.6 2795.7 2807.5 2788.9 2788.8 2792.3
σ - 51.55 30.02 18.78 18.47 24.25 15.86 14.3 15.27 78.2 37.94 27.14 25.92 31.15 24.43 24.01 23.71

18
Psuc - 0.02 0.01 0.07 0.08 0.07 0.08 0.11 0.09 0 0.03 0.11 0.11 0.1 0.11 0.14 0.1

w(Tbest) 4270.7 3703.3 3671.6 3615.5 3618.9 3636.5 3612.8 3608.1 3613.7 3830.9 3662.6 3621.7 3619.9 3634.8 3617.7 3614.1 3619.0
σ - 95.42 50.18 29.09 30.84 37.33 29.11 26.46 27.38 137.44 66.21 49.9 45.02 49.11 46.36 44.8 41.22

20
Psuc - 0 0 0.02 0.05 0.04 0.02 0.06 0.06 0 0.01 0.04 0.05 0.04 0.05 0.06 0.06

w(Tbest) 5415.2 4677.5 4592.1 4494.1 4495.2 4528.3 4488.9 4476.6 4488.1 4890.5 4572.3 4510.8 4510.4 4537.7 4503.2 4494.0 4502.1
σ - 157.72 75.32 43.85 47.17 59.88 44.12 37.15 41.59 208.43 94.19 72.99 70.51 75.99 71.32 66.07 64.29

TABLE II
NUMBER OF EVALUATIONS eval FOR LARGER PROBLEM INSTANCES

n 25 50 75 100
eval 5,000 20,000 40,000 80,000

evaluations improves EA performance, we also increase eval
with larger n (see Table II). We present results for OCST
instances with n = {25, 50, 75, 100}. For each problem
size, 100 random instances are created. Due to computational
restrictions, we consider only 50 instances for n = 75 and
25 for n = 100. For each problem instance, we perform 20
independent EA runs on a dual core Intel processor with 2
GHz and 4 GB RAM running 64bit Linux.

For different n, we list w(Tbest) using either ES (Table
III) or NetDir (Table IV). Additionally, we show the standard
deviations σ of w(Tbest) and the average running time tcpu
(in seconds). EAs with heuristic crossover perform best if
edge orientation is considered. EAs using ES or NetDir with
α = 0.7 and β = 0.3 outperform heuristic selection strategies
considering only distance weights (α = 1, β = 0). Differences
are significant using a ranked t-test with an error level of
p < 0.01. Also differences between heuristic and non-heuristic

(RX) variants are significant with an error level of p < 0.0001.
Considering edge orientation does not increase CPU times,
however, NetDir needs twice as long in comparison to ES due
to the more complicated crossover method.

The plots in Fig. 6 show the average gap w(Tmst)−w(Tbest)
w(Tmst)

(in percent) between the best found solution Tbest and an MST
over n. A large gap indicates good EA performance. We have
chosen the MST as reference since it is already a high-quality
solution for OCST problems. EAs with α = 0.7, β = 0.3
perform best and are able to find high-quality solutions with
larger distances from MSTs.

Overall, performance of EAs using heuristic crossover is
good if edge orientation is considered when selecting off-
spring’s edges (α = 0.7). Performance can be further improved
if edges next to the graphs’ centers are neglected (β = 0.3).

V. SUMMARY AND CONCLUSIONS

This work studies the OCST problem and shows that edges
in optimal solutions are not uniformly oriented but edges
pointing towards the tree’s center occur with higher proba-
bility. Thus, EA performance can be systematically improved
by biasing the search operators to favor such edges.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 0, NO. 0, DECEMBER 200X 7

TABLE III
EA PERFORMANCE FOR LARGE PROBLEM INSTANCES USING ES

rij n MST RX β = 0 β = 0.3
α=1 α=0.8 α=0.7 α=0.6 α=0.8 α=0.7 α=0.6

un
if

or
m

]0
,1

0
]

25
w(Tbest) 13046.46 14336.4 11168.47 10792.95 10841.04 11090.93 10734.67 10672.61 10697.67

σ - 663.39 129.4 95.45 107.81 162.12 79.17 62.63 65.82
tcpu - 0.46 0.46 0.45 0.45 0.45 0.45 0.45 0.44

50
w(Tbest) 60414.6 61776.79 47217.46 45174.28 45703.93 46634.06 44661.38 44470.87 44530.74

σ - 5656.98 659.54 541.75 623.97 774.08 386.1 336.37 341.48
tcpu - 7.85 7.98 7.5 7.32 7.18 7.5 7.33 7.2

75
w(Tbest) 146666.49 144911.47 110239.47 104481.36 105705.18 107280.61 103620.07 103179.69 103203.24

σ - 19931.81 1783.95 1197.07 1441.39 1771.13 972.17 1053.69 1019.64
tcpu - 39.42 40.92 37.3 36.37 35.71 37.4 36.45 36.06

100
w(Tbest) 273907.56 217994.8 197470.94 188629.33 189753.68 191777.38 186734.87 186601.03 186616.35

σ - 18136.12 3590.61 2010.94 1989.15 2368.65 1426.39 1466.98 1272.11
tcpu - 149.91 163.44 146.05 141.61 139.88 145.46 141.07 139.27

Z
ip

f
[1
,1

0
]

25
w(Tbest) 8971.71 9836.46 7632.19 7381.63 7435.29 7602.21 7335.87 7306.6 7323.61

σ - 451.14 88.94 66.54 85.91 111.71 52.31 47.57 49.15
tcpu - 0.46 0.46 0.45 0.45 0.45 0.45 0.45 0.44

50
w(Tbest) 41360.71 42208.91 32385.65 30959.98 31310.29 31903.08 30696.32 30546.99 30631.24

σ - 3962.15 425.92 347.41 425.16 537.9 274.62 240.84 233.99
tcpu - 7.85 7.93 7.47 7.28 7.15 7.47 7.31 7.19

75
w(Tbest) 103171.16 98551.87 75860.84 71806.87 72440.23 73413.01 71206.76 70899.78 70842.18

σ - 13464.27 1274.22 771.67 998.17 1043.13 700.35 647.89 617
tcpu - 39.38 41.23 37.44 36.4 35.75 37.41 36.43 35.88

100
w(Tbest) 189905.54 147212.74 133607.99 126700.48 127705.89 129517.46 125752.76 125296.04 125380.23

σ - 12931.02 2373.63 1282.23 1457.66 1723.26 1102.86 1117.2 994.55
tcpu - 149.75 161.65 142.18 137 133.49 144.13 139.47 137.56

TABLE IV
EA PERFORMANCE FOR LARGE PROBLEM INSTANCES USING NETDIR

rij n MST RX β = 0 β = 0.3
α=1 α=0.8 α=0.7 α=0.6 α=0.8 α=0.7 α=0.6

un
if

or
m

]0
,1

0
]

25
w(Tbest) 13046.46 14227.2 11172.89 10855.55 10860.05 11019.85 10802.14 10748.89 10774.09

σ - 597.55 179.02 152.57 151.46 186.06 131.9 118.9 121.5
tcpu - 0.61 0.61 0.6 0.6 0.6 0.6 0.6 0.6

50
w(Tbest) 60414.6 63248.7 47190.02 45547.11 45863.24 46625.44 45197.72 45003.69 45101.67

σ - 3564.34 1057.19 859.94 918.09 1032.24 810.97 666.68 744.5
tcpu - 14.6 14.05 13.96 13.97 13.96 13.97 14.02 13.97

75
w(Tbest) 146666.49 164267.53 111914.36 107405.89 108694.24 111415.18 106300.68 106120.8 106470.56

σ - 10392.99 2847.32 2778.71 3042.12 4008.84 2333.4 2381.52 2524.53
tcpu - 87.31 83.3 83.52 83.83 83.98 83.67 83.64 83.9

100
w(Tbest) 273907.56 307756.16 201303.24 196095.84 200454.3 204455.03 192629.78 192347.1 194284.05

σ - 20344.12 6059.54 5962.87 7829.42 8481.6 4502.47 5068.37 5480.95
tcpu - 391.48 375.04 374.31 374.43 376.82 373.5 373.75 375.12

Z
ip

f
[1
,1

0
]

25
w(Tbest) 8971.71 9718.4 7637.61 7426.95 7449.66 7571.55 7383.1 7356.23 7374.92

σ - 395 133.76 106.4 109.18 122.75 88.7 83.76 86.91
tcpu - 0.61 0.61 0.6 0.6 0.6 0.6 0.6 0.6

50
w(Tbest) 41360.71 43544.69 32377.31 31175.54 31442.19 31941.43 30990.68 30910.49 31001.03

σ - 2534.16 697.63 589.28 602.04 669.04 514.42 480.12 499.17
tcpu - 14.6 14.09 14.03 14.02 14.02 14.03 14.03 14.02

75
w(Tbest) 103171.16 112989.81 77036.47 74244.53 74972.06 76455.63 73149.53 73038.13 73359.8

σ - 6652.43 2165.71 1980.75 2132.39 2282.15 1523.37 1542.47 1799.97
tcpu - 87.16 83.22 83.11 83.58 83.56 83.17 83.38 83.57

100
w(Tbest) 189905.54 208206.86 139200.24 134458.69 137368.24 140703.7 129108.27 129389.41 129783.93

σ - 16034.97 5182.14 4696.39 5848.25 7055.14 3268.43 3341.42 3174.71
tcpu - 390.33 374.13 373.9 372.85 374.92 374.33 374.8 374.09

We exploit this property of optimal solutions for crossover
operators of direct tree representations like edge-set and Net-
Dir. In such representations, crossover creates offspring by
iteratively selecting parental edges. We propose an extended
crossover operator which selects edges to be included in the
offspring based on edge weights and edge orientation. Parental
edges that have low weight and point towards the center of
the tree are included with higher probability in an offspring.
Crossover operators using both criteria, weight and orientation,
outperform existing approaches which consider only edge
weights.

The results suggest using heuristic crossover operators
which prefer edges that point towards the center of a tree and
have low distance weights. Considering both criteria results in
a robust EA performance, and also problems where the optimal
solution is quite different from MSTs can be solved. While we
focus in this work on OCST problems, the basic approach is
generally applicable to other Euclidean graph problems.

Future work will address what other problem-specific
knowledge of tree problems can be used for designing high-
quality EAs. While current approaches use only properties of
edges, future work will analyze properties of tree structures.
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Fig. 5. Edge set and NetDir performance using different edge-selection
strategies for randomly generated OCST instances (n = 12). We show
average success probability Psuc over dopt,mst (left) and average gap
w(Tbest)−w(Topt)

w(Topt)
(in percent) over dopt,mst (right).

−10

−5

 0

 5

 10

 15

 20

 25

 30

 35

 25  50  75  100

di
st

an
ce

 b
et

w
ee

n 
w

(T
be

st
) 

an
d 

w
(T

m
st

) 
[%

]

n

ES − RX
ES − α=1, β=0

ES − α=0.7, β=0
ES − α=0.7, β=0.3

(a) Edge Set

−10

−5

 0

 5

 10

 15

 20

 25

 30

 35

 25  50  75  100

di
st

an
ce

 b
et

w
ee

n 
w

(T
be

st
) 

an
d 

w
(T

m
st

) 
[%

]

n

ND − RX
ND − α=1, β=0

ND − α=0.7, β=0
ND − α=0.7, β=0.3

(b) NetDir

Fig. 6. EA performance using different crossover variants for randomly
generated OCST instances. The plots show the average gap between the cost
of the best found solution and the MST over the problem size n. The larger
the gap, the higher EA’s performance.

Other promising areas are problem-specific mutation and ini-
tialization operators for edge-set or NetDir which consider
edge orientation.
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