JGlu

sonannes GUTENBERG
UNIVERSITAT MAINZ

Fitness landscape analysis and design of metaheuristicg fo
car sequencing

Uli Golle

Working Paper 03/2011
May 2011

Working Papers in Information Systems
and Business Administration

Johannes Gutenberg-University Mainz
Department of Information Systems and Business Admirtistra
D-55128 Mainz/Germany
Phone +49 6131 39 22734, Fax +49 6131 39 22185

E-Mail: sekretariat[at]wi.bwl.uni-mainz.de
Internet:htt p: //wi . bwl . uni - mai nz. de



Fitness landscape analysis and design of
metaheuristics for car sequencing

Uli Golle

Abstract—We study the car sequencing (CS) problem, an NP- each solution is assessed using a so-called fitness function
hard combinatorial optimization problem which aims atfindinga  Thus, landscapes are often referred to as fitness landscapes
production sequence of different models launched down a mixed- The analysis of fitness landscapes can give valuable irsight

model assembly line. The models are differentiated by a number . to the ch teristi fth h Th infi
of selected options. For each option, a so-called sequencing rule!Nto the charactenstics ot the search space. 1hese intamsa

is applied which restricts the option occurrences in the sequence ¢an be employed to design better search algorithms that
in order to minimize the work overload of the respective line incorporate more problem-specific knowledge, which isialuc
operators. In this paper, we perform a fitness landscape analysis for effective optimization algorithms.

of several instances of the CS problem, where we examine In this paper, we study the resulting landscapes of four

the autocorrelation as well as fitness-distance correlation (FDC) . hborhood ¢ d th dist trics f t
induced by four neighborhood operators and three distance N€!9N0OrNO0d operators and three distance metrics for a se

metrics. These results are subsequently employed for the desigh o Of CS instances. We analyze local and global properties of
two metaheuristics for CS, a variable neighborhood search (VNS) the landscapes by performing an autocorrelation and fithess

and a memetic algorithm (MA) evaluated with three different distance correlation analysis. The results of the landscap

crossover operators. The VNS shows superior performance and 441vis are employed to design two metaheuristics for CS,
even improves currently best known solutions of instances in the

CSPLib. Although the results of the MA algorithms are inferior a Simplle Va”?b'e neighborhood search (VNS) as well z.is. a
compared to VNS, applying crossover operators that respect ¢ memetic algorithm (MA). Thereby, we propose a new heuristic
adjacency distance metric lead to a better solution quality than crossover operator for CS. The performance of the VNS and

using other crossovers. the MA with the new crossover operator as well as two existing
ones is evaluated in experiments using widely applied CS
problem instances from the CSPLib. The main findings are:
1) Three out of the four neighborhood operators lead to
The car sequencing (CS) problem [1] is a combinatorial * 3 smooth landscape for CS in terms of the normalized
optimization problem seeking a production sequence of vari  ¢grrelation length.
ous models launched down a mixed-model assembly line. Thg) All neighborhood operators and the adjacency distance
models are derived from a common base product and differ metric show a high fitness-distance correlation on all
in @ number of selected options. Nevertheless, all models ar  jnstances and, thus according to [3], result in an ’easy’
jointly manufactured on the same mixed-model assembly line problem for evolutionary algorithms.

can vary and the line is balanced to an average model, a gtrycture for CS is identified.

sequence of consecutive work-intensive models may lead @) |ncorporating the findings of the landscape analysis into

I. INTRODUCTION

work overload of the respective line OperatOI’S. Work owatlo Operators for the VNS and the MA leads to h|gh qua“ty
occurs, whenever an operator can not finish his assigned metaheuristics that find the best-known sequences for all
tasks within the available station limits. These work ovad test instances and even improve the currently best solution

scenarios have to be compensated by other strategies, such a of two instances.
employing additional utility workers or stopping the ling The remainder of the paper is organized as follows. In
minimize the total amount of work overload, CS uses a e,

: . ection Il, we review relevant literature on CS and state its
called sequencing rule of typ : N for each selected option,

hich ricts th ¢ models having thi " optimization model. Section Il presents four neighborthoo
which restricts the occurrence of models having this op 'Odﬁerators proposed for CS and studies characteristicseof th
to at mostH, in any subsequence df consecutive models.

L : . fitness landscapes resulting from these operators. Thghiissi
The aim is to find a sequence, which .meets the dema gined from Section Il are used in Section IV to design a VNS
for each model and satisfies all sequencing rules (constr ' well as a MA for CS. The performance of the metaheuristics

safisfaction problem) or minimizes the number of sequegncili"g evaluated in experiments in Section V. Section VI conetud
rule violations (optimization problem). CS belongs to theess the paper

of NP-hard problems [2].
The concept of landscapes is an intuitive notion of the $earc
space, the set of all solutions to a combinatorial optindrat
problem. A search algorithm navigates through the landscap The CS problem stems from applications in the automo-
in order to find the best solution, usually the highest pediile industry and was first introduced by [1]. As its related
or the lowest valley. Therefore, all solutions have to bapproach of Mixed-Model Sequencing (MMS) [4], it aims
connected by a certain distance measure and the qualityabffinding a sequence of different models to be produced at

Il. THE CAR SEQUENCING PROBLEM



Table |

NOTATIONS one model at each production sko€3). Constraints (4) check
for rule violations. We apply the sliding-window approach,
T number of production slots (indey where a violation of a subsequence is always assessed with
M number of models (index») one violation in the objective function [5]. Finally, (5) &r6)
O number of options (index) iabl d to be bi
d, demand for modein ensure variables,,,; andy,; to be binary. '
Gom binary demand coefficient: 1, if modeh requires Since CS is NP-hard in the strong sense [2], various exact,
Hon optiono, 0 OthlefW'fe S outof N el heuristic and hybrid search procedures have been developed
o No sequencing rule: at mosi, out o o successively .

sequenced models require option in order to sol\_/e the problem [6], [7]_. Among the ex_act
Tont binary variable: 1, if modein is produced in slot, approaches are integer linear programming (ILP) formaoutesti

g_OIhefW'S_e be: 1 it _ e defined f While [5] present the aforementioned basic ILP, the ILP by [8]
Yot Inary variable: 1, I sequencing rule define or . . .

option o is violated in window starting in cycle focuses on optlon aSS|gnment§ to the sequencellnstea'd ef mod
BI Big Integer els and also includes constraints of the preceding pairp.sho

[9] propose a scattered branch & bound algorithm introdycin
new lower bounds and dominance rules for CS. Their bounds
a mixed-model assembly line with minimum work overloadare further improved by [10], who solve a graph represeonati
Work overload occurs, whenever a line operator can not finish CS with an exact iterative beam search algorithm which is,
his assigned assembly tasks due to a consecutive orderaegording to experimental results, currently the bestkmo
work-load intensive models in the sequence. In contrast @sact algorithm for CS.

MMS, CS applies a surrogate objective for the minimization As for heuristics and metaheuristics, different approache
of work overload. Given a pool of different models, whichncluding construction heuristics, local searches, eiahary

can be distinguished by selected binary options (such algorithms and ant colony optimizations have been develope
having an air conditioning or not in case of car models)p [11], different greedy heuristics for the optimizatioargion

CS restricts the occurrences of each optiore O in the of CS are studied and applied in local search as well as ant
sequence by using so-called sequencing rulgs: N,. A colony algorithms. In [12] the constraint satisfaction sien
sequencing rule allows onlyZ, models having optioro in of CS is addressed and different value ordering heuristics t
any subsequence d¥, consecutive models. For instance, &onstruct an optimal sequence are proposed. Different loca
sequencing rule of 3:5 for the option 'sunroof’ requirestthgearch procedures are introduced in [13] including greedy a
at most 3 out of 5 consecutive models contain a sunroof.Well as threshold accepting algorithms that employ a set of
more models have a sunroof, a violation of the respectivarious neighborhood operators. A large neighborhoodchear
sequencing rule occurs. The aim of CS is to find a productiéh also introduced in [14] using different move operators
sequence containing all models in the pool and inducing taed search strategies. In [15] and [16] an industrial versio
minimum overall number of rule violations. It is assumedtth®f CS with instances having more than 1000 models and
the minimization of sequencing rule violations simultangly  including paint shop constraints and the distinction betwe
leads to the underlying goal of minimizing the total amouit dard and soft constraints, is solved by local search apglyin
work overload. With notations from Table I, the CS problermariable neighborhoods. Among evolutionary approaches, a
is formulated as an integer linear program as follows [5]: genetic algorithm (GA) is developed in [17] using a ver-
sion of adaptive template type crossover and performinlg hil

T_N,+1 climbing as mutation operator. For the industrial versidn o
CS: Minimize Z Z Yot (1) CS, a genetic local search procedure is designed in [18]. The
0cO  t=1 authors introduce a crossover operator that preserves oamm

subsequences in both parents and apply a local search using

T a shift neighborhood after each recombination. In [19] a
Zﬂcmt =dn, VmeM (2) standard GA is combined with squeaky-wheel optimization,
t=1 where sequences are iteratively constructed and improyed b
Z Tme=1 Vt=1,...,T (3) adaptive priority rules. A series of new crossover opestor
meM GAs is presented in [20], showing good results on instances
t+N,—1 of the CSPLib. These results are further improved by apglyin
Z Z Tt + Gmo < Ho + Yor - BI ) a subsequent local search. Furthermore, ant colony ogtimiz
t'=t meM tions are presented in [11], [5], [21], [22] applying diféert
Yoe O;t=1,...,.T—N,+1 pheromone trails and transition rules. In summary, locatce
Tt €{0,1} VmeM;t=1,...,T (5) Procedures applying a set of neighborhood operators shew th

overall best results on CS instances.
Yor €{0,1} Vo€ Ot =1,....T ©) Few authors provide hybrid algorithms for CS, combining
Yo indicates whether a rule violation of optienoccurs in  exact and heuristic approaches. In [8] an ILP is incorparate
a subsequence starting at positianThe objective function into a variable local search procedure producing competiti
(1) minimizes the overall number of rule violations. Theesults for the industrial version of CS. In [23] the authors
resulting sequence has to meet the required dendandor previous GA approach is extended by incorporating ILP for-
each modelm € M (2) and is allowed to contain exactlymulations into the crossover operator. The solution qualit



the resulting GA on the CSPLIb instances is increased, butBat Autocorrelation

the cost of a very high runtime. The autocorrelation analysis studies the ruggedness of a

landscape, which is important for local search procedukes.
I1l. FITNESSLANDSCAPEANALYSIS OF CAR SEQUENCING fitness landscape is said to be rugged, if no correlationdestw
) . the distance of solutions and their fitness values existas,Th

In general, a fithess landscap#’, f,d) of an instance of

a combinatorial optimization problem consists of a set Ozsmall distance between two solutions can imply a large

solutionsX, a fitness function (objective functiorf): X — R, ffference in their objective values. Rugged landscapes ar

) : S . . difficult to search for guided local search methods, which
which assigns an objective value to each of the solutions,in . . . :
traverse the search space by iteratively sampling newisohut

and a distance measuiig which defines the spatial structurem the neighborhood of a current solution. Thereby, the $isne

of the landscape. For the notion of distances a so-called T 4

. . . .~ “value of the current solution is employed to decide whether
neighborhood operatak’ is applied. " converts a solution the search proceeds with one neighboring solution or na. Th
x € X into a new solutionr’ € N(z) C X by changing P 9 9 )

the composition ofz. With the neighborhood operatol, search is guided from low quality solutions to higher quyalit

the search space can be interpreted as an undirected g%L%H“onS in order to find the global optimum. However, on a

= : ) X gged landscape, the fitness values of neighboring sohitio
ggfge_se(zgf){ (V;'tz,)xe tfzg)(t Ti,vee%:(ezs)}ornirs dggﬁ%ha?]n are not correlated and can, therefore, not be used to guide th

. search process, which results in a merely random search. In
edge between and 2/, if 2’ can be reached from by one P y

application of A" or vice versa. The distana#z, y) between contrast, if a correlation between the distance and thestne

two solution z and y is then defined as the length of thevalue of solutions exists, the respective landscape istodie

. . - smooth and is adequate for guided local search methods.
shortest path fromy to y in G, which equals the minimum In [24] the autocorrelation function is introduced to cortgu
number of applications of\" to transformz into y or vice ;
versa. the ruggedness of a landscape. The approach requires to

For CS, we analyze the fitness landscapes for a set evfaluate the entire search space of a problem instance, thus

nine widely applied problem instances in the IiteratureeThacfI solutions in &', Since for many optimization problems,

: . . . L including CS, the number of solutions increases exporigntia
instances are available in the CSPLib, an online library f%re ending on some input factor, Weinberger [25] proposes to
constraint satisfaction problems. Each instance has 100 P 9 b X 9 brop

production slots M — 19-26 models withO — 5 options use a random walk to estimate the autocorrelation. Beginnin

: . With an arbitrary solution, a random walk picks a random
to be sequenced. For every instance, we generate different .~ - . .

) . . ' .~ solption in the neighborhood of the current solution and
fitness landscapes using equation (1) as fitness function an

four neighborhood operators found in the literature [13k roceeds the walk with the new solution. This move is regkate

. . . until a maximum numberm of walking steps is reached. The
study the autocorrelation of the resulting landscapesrimge _. : - .
. . . fitness valuesf(z) of all solutionsz visited during the walk
of a random walk analysis and perform a fitness-distance . :
X . are used to compute the random walk correlation functian
correlation analysis.

as follows

A. Representation and Neighborhood Operators m—s

1 _
A solution for CS is represented by a permutation with (s) = 2 m—3) S (@) =N @es) =) (@)
repetitions. Thus, a sequence is encoded as a vector ohlengt t=1
T, where a valuen € M at positiont = 1,...,T" indicates  With o2(f) being the variance of the fitness valuess)
that a copy of modeln is produced at théth production computes the correlation of all solutions that aresteps
slot. We only consider feasible solutions, where the sugway along the random walk of lengtin. Based on the
of occurrences of each modek € M in the sequence nearest-neighbor correlation of the landscapg), which is

corresponds to the models demadig]. This is ensured by the correlation of neighboring solutions, the correlatiemgth
an appropriate initialization of solutions and neighbatho ; of the landscape is defined as [26]

operators that maintain feasibility.
For the fitness landscape analysis of CS, we consider four 0 it (1)
T =
=S )
{_lnurl(l)l)’ if (1) #

) ) [ reflects the ruggedness of the landscape. The lower the
« Swap neighborhoodVs,: Two models in the sequences.orrelation length the more rugged the landscape. Since the

different neighborhood operators™ [13], that are currently
applied in the literature. The operators are along the lihe o
operators for the traveling salesman problem:

0
. ®)

exchange their positions. _ correlation length depends on the applied neighborhood ope
« Adjacent swap neighborhoalaq: Two adjacent models ator as well as on the size of the instance, different ingtsnc
in the sequences exchange their positions. and/or neighborhood operators should be compared by the

« Shift neighborhoodVs: A model is forward or backward normalized correlation length [27, p. 229]
shifted a certain number of positions in the sequence.

» Reverse neighborhoadlie: The order of a subsequence U = !
of models is reversed. diam(Gn)

C)



Table I

DIAMETERS OF NEIGHBORHOOD OPERATORS operation in order to transform one solution into anothewH
ever, the computation of the distances is not straightfotwa
Naw T-1 for every neighborhood operator in Section IlI-A. For imste,
Nad @ no polynomial algorithm is available to compute the disenc
%sh 5— } of the Ve operator [28]. Thus, in order to allow a comparison
re -

of the resulting FDC coefficients for different neighbordoo
operators, we apply the following surrogate distance metri
[29]:

with diam(Gar) being the diameter of the search space, ) . N e ,
which is the maximum distance of any two solutionsgxr. « Adjacency distance metrid,q;: The bidirectional adja-

The diameters of the considered neighborhood operators are C€NcY distance computes how often a pair of models is
listed in Table 1. adjacent in both sequences

Precedence distance metidg, ... The precedence dis-
tance computes how often a model is preceded by a
modelm’ in both sequences.

« Absolute position distance metrit,;s: The absolute po-
sition distance computes the number of times the position
of models is identical in both sequences.

For each CS instance, we get four different fitness land-°
scapes by applying the neighborhood operators of Section
[1I-A together with equation (1) as fitness function. To maas
the autocorrelation of the resulting landscapes, we perfar
random walk with 100,000 steps on each landscape and deter-
mine the random walk correlation coefficient of neighboring
solutionsr(1) and the normalized correlation length Table The combination of the four neighborhood operators with
[ll shows the respective results. the three distance approximations leads to twelve fithess

The results of the correlation coefficient$1) suggest a landscapes overall for each instance. For each neighbdrhoo
smooth landscape for all instances and neighborhood opeperator, we determine 1000 local optima by applying a
ators, especially for\ag. However, sinceNgg has a larger steepest ascent hill climbing algorithm using the respecti
diameter as compared to the other operators, the normalizgetrator which starts from a random solution and stops if
correlation lengthg’, suggestsVisp, NVe and N, to be favor- a local optimum is reached. The global optimum for each
able for local search procedures. instance is known, except for instance 19-71, where we
use the best known solution instead. The global optima are
obtained by an iterative beam search (IBS) algorithm [18E T
FDC coefficients are calculated for the distance to the dloba

The Fitness-Distance-Correlation (FDC) [3] is a measumptimum (g00q:) as well as for the average distances to all
for problem difficulty for evolutionary algorithms. The FDCother local optima d;...;). Table 1V presents the respective
measures the correlation between the fitness differences gesults.
solution and the global best solution and their distances inThe results suggest that the adjacency distahge is the
the search space. Thus, with a sample of solutions, the FREst metric to describe structural properties of local ropti

C. Fitness-Distance-Correlation

coefficientp is defined as solutions, as the resulting correlation coefficients aghéi
compared to the other metrics. Thus, a certain amount of
COV(f, dopt) adjapent model pairs are shared by high quali_ty golutions. A
o(f, dopt) = (10)  cording to [3], 0g10bar > 0.15 and gjoeq; > 0.15 indicate that

o (f)o(dopt) the resulting landscapes for all instances and neighbdrhoo
with dopt being a solutions distance to the nearest optimaperators are suitable for EAs using the adjacency distance
solution and coff,dopt) the covariance off and dop. A metric. A value of ggipa > 0.15 means, that the fitness
value of p = 1 indicates a perfect correlation between fitnesand the distance to the global best solution are positively
and distance to the optimum. The more both values agerrelated since the smaller the distance to the global best
correlated, the easier the resulting problem is for selaeti solution the lower the fitness value of a solution. Note, that
based algorithms as a path of solutions with increasingdfitneour case solutions with a low fitness are favored, since CS is a
values leads to the optimum [24]. The problem difficulty caminimization problem.g;,..; > 0.15 indicates that the lower
be classified [3] according to. A value of p > 0.15 sug- the fitness value of a solution the smaller the average distan
gests a straightforward minimization problem for evolotioy to all other local optima. Thus, high quality local optima li
algorithms, while lower values of indicate an uncorrelated in the center of other local optima.
or even misleading landscape. The FDC coefficient can beln Figure 1, we show some scatter plots for a representative
computed for random solutions as well as locally optimaxample using instance 10-93 and.. Figures 1(a) and 1(b)
solutions. The usage of locally optimal solutions can givelot for each local optimum its adjacency distance to the
further insights into the global structure of the searchcepaglobal optimum and its average adjacency distance to adiroth
[24]. Additionally, fitness-distance plots are suitable tbe local optima, respectively, against its absolute fitnessatien
interpretation of the results. to the global optimum. We can observe the aforementioned
To compute the FDC coefficient, the distances betweg@ositive correlation between the adjacency distance aad th
solutions have to be known. The actual distance between tfitness of a solution. Furthermore, all local optima are telresd
solutions is the minimum number of a specific neighborhoad a small region of the search space as the maximum



Table Il
RANDOM WALK CORRELATION COEFFICIENTS AND NORMALIZED CORREIATION LENGTHS

instance r(1) I
Nsw Nad Nsh Me -/\/—sw Nad Nsh -/vre

4-72 0.9512 0.9880 0.9648 0.9621 0.2019 0.0167 0.2817 0.261
6-76 0.9543 0.9878 0.9671 0.9646 0.2162 0.0165 0.3015 5.280
10-93 0.9526 0.9877 0.9654 0.9631 0.2082 0.0163 0.2867 88.26
16-81 0.9516 0.9876 0.9642 0.9621 0.2038 0.0162 0.2775 18.26
19-71 0.9533 0.9880 0.9654 0.9637 0.2111 0.0168 0.2867 3D.27
21-90 0.9550 0.9879 0.9673 0.9648 0.2195 0.0166 0.3040 20.28
26-92 0.9540 0.9886 0.9668 0.9641 0.2147 0.0176 0.2994 696.27
41-66 0.9540 0.9887 0.9677 0.9648 0.2143 0.0178 0.3076 20.28
26-82 0.9537 0.9885 0.9658 0.9642 0.2130 0.0175 0.2902 60.27

Table IV
FITNESS-DISTANCE CORRELATION COEFFICIENTS

instance Naw Nad Nsh NMe
dadj dprec dabs dadj dprec dabs dadj dprec dabs dadj dprec dabs
o 0global 0385 0041 0110 0419 0302 0023 0404 0001 0015  0504.1060 0.117
Olocal 0.343 0.025 0.194 0.319 -0.085 -0.416 0.451 0.074 -0.069 100.5 0.127 0.245
6-76 Qglobal 0.256 -0.024 0.015 0.388 0.054 -0.109 0.283 0.006 -0.062 190.3 0.048 0.102
Oloeat 0365 0032 0076 0284 -0.077 -0.387 0429 0073  -0019 660.4 0031  0.126
10-93 Qglobal 0.260 -0.062 -0.005 0.575 0.276 -0.012 0.350 -0.039 -0.015 .5040 -0.001 0.063
Olocal 0.340 -0.027 0.009 0.237 -0.146 -0.441 0.436 -0.065 -0.112 5790 0.019 0.094
16-81 Qglobal 0.300 0.056 0.044 0.451 0.256 0.077 0.357 0.061 0.060 0.470 .1020 0.103
Olocal 0.425 -0.038 0.136 0.288 -0.054 -0.264 0.419 0.020 -0.026 5570. 0.070 0.158
19-71 Qglobal 0.202 0.030 0.045 0.565 0.282 -0.061 0.317 0.036 0.039 0.3360.082 0.042

Olocal 0.354 0026 0076 0165 -0.156 -0.507 0451  -0.035  -0.140 5410. 0.112  0.148

2190 Ogiobar 0306 -0.010 0043 0541 0286 0003 0309 0006 0021  0.364.045  0.063
Olocal 0.375 0038 0062 0268 -0.067 -0.372 0469  -0.001 -0.034 57%0. -0.004  0.158
36.92 Oglobar 0191 0068 0041 0610 0138  -0.168 0317  0.006  -0.039 40.38 0.022  0.071
Olocal 0359 0034 0111 0135 -0.139 -0476 0465 0011  -0.121 595 0.114  0.208
4166 Oglobar 0112 0024 0002 0427 0048 -0062 0187 -0.189  -0.077 990.1 0030  0.081
Olocal 0.256  0.044  0.105 0222 -0.175 -0.368 0406  -0.086  -0.187 3840. 0.004  0.102
06,82 Oglobar 0289 0010 0090 0525 0316 -0015 0322 -0068 0025 30.40 0.088  0.024
Olocal 0.367 0052 0194 0242 -0108 -0.512 0413  -0.022 0041 0305 0.085  0.164

distance between any two local optima is 12,15 (see Figuke Variable Neighborhood Search

1(b)). Figures 1(c) and 1(d) present the scatter plots fer th . )

precedence distance and absolute distance, respectofely, fLocaIbsI,earc;h (LS) aLgorFrhm_s elxplore. thef fitness Ian(?sc;ape
each solution to the global optimum against its absolutesin ot a problem _mr?éan_ce y 'I‘efa“"e yhmov;)ng rorfr_1 one so ut_llo
deviation to the global optimum. Both distance metrics seel® al new neigr orlnghs((j) ultlon (\jN't a et_':jerb Itness, unt(lj a
to have a low correlation which confirms the results of TabllgCa optimum Is reached. In order to avoid being trapped in

IV. Again, for d the local optima appear to be grouped ithe first local optimum found, several metaheuristics based
a small région Zroimd the global optimum, whereas dfa, on LS have been developed, like simulated annealing [30],

the distances to the global optimum are close to the diamegré(:h accepts worse solutions with a certain probability, o

of the search space which suggests that the local optima ubsel_arch [Shl]’ V\r/]here the last v_|s_|tegl SOIUt'onjl arz ?;;Te
evenly distributed in the landscape. Interpreting theplate atabu list so that they are not revisited repeatedly. N

assume the existence of a 'big valley’ structure dgy;, since metaheudriitic, 3c;1lledhvaria_1ble nec;ghfborho?d searchn (\r?g@h d
local optima are accumulated in a small region of the sear[PPOS€A by [32], where instead of merely one neighborhoo

space with high quality solutions being in the center of ghperator, a set of'neighporhoods is applied. Th'us, VN.S can
local optima. escape a local optimum in one landscape, by using a different

neighborhood operator and, thus, changing the landscdyge. T

original scheme of VNS arranges all neighborhood operators

in a certain sequence with increasing neighborhood size. If
In this section, we describe two metaheuristics for CS,\dNS experiences a local optimum using one neighborhood

variable neighborhood search (VNS) and a memetic algorit@perator, the search proceeds with the next operator irighe |

(MA), whose designs are based on the results of the precedutil a certain stopping criterion is reached.

landscape analysis. In order to decide if the current solution is a local op-

IV. METAHEURISTICS FORCAR SEQUENCING



£ 5 Table V
£ 40 £ 40 DISTANCES BETWEEN REDUNDANTCS SOLUTIONS
5 35 5 35
% 30 (_OG 30 &
25 25 = T
S 20 3 20 = Nowa 7. ,for evenT'
g, s g) 15 = —— ,foroddT
= = = T(T-1
c c ins -
= 0 b= 0
b 0 20 40 60 80 100 g 0 20 40 60 80 100 Nrew !

d

(a) Adjacency distanced,q; to (b) Average adjacency distandg g,
global optimum against absolute fit-to all other local optima against ab- are obtained using the results of Section 1lI-B, where the

ness difference to global optimum solute fitness difference to global op- autocorrelation of the Iandscape induced by each operstor i

aqj to global optimum d,gj to local optima

£ tmgwm analyzed. It is assumed that the smoother the landscape, the
g 40 g 40 better the performance of LS [27]. Regarding the normalized
g 23 g 28 . correlation lengthsl’ in Table I, the shift operatorNsy

g Ié‘ 25 leads to the smoothest landscape, followed\jy and Ngy.

> = ig However, we also have to consider the locality induced by our
2 g 10 representation and neighborhood operators [33], [34]alityc

= 0 = g describes how well the genotypic neighborhood corresptinds

a 0 1K 2K 3K 4K 5K < 0 20 40 60 80 100 the phenotypic neighborhood of a solution [35]. Our repnese

prec to global optimum daps to global optimum tation of solutions leads to redundant solutions in the ggmno
(c) Precedence distancé,.. to (d) Absolute distance,;, to global Search space, as for each sequence a symmetric solution
global optimum against absolute fit-optimum against absolute fitness dif- with equal fitness can be found by inverting the sequence. A
hess difference to global optimum _ference to global optimum neighborhood operator which induces a large distance lsetwe
both, the sequence and its inverted counterpart, resules in

Figure 1. Scatter plots for instance 10-93 ahkg: based on 1000 local low locality, as two actually identical areas in the gendtyp

opima. landscape are far away from each other. Thus, high quality
Input: initial solution z solutions are also clustered in two regions of the searcbespa
Output: best solution found from which merely one is explored by a LS algorithm. In
Initialize probabilitiesp contrast, LS benefits from a small distance between both
Evaluateg) redundant solutions as the search can be intensified in one
for i := 1 to Nyns do small area of the search space where high quality solutions
N + SelectNeighborhoodOperatpy( are concentrated. For each neighborhood operator, thendest
2 N(z) between a sequence and its inverted counterpart is shown in
Evaluate’) Table V.
if 2/.fitness < x.fitness then For the MVag and Ng, operator, the distance between two
" redundant solutions equals the diameter of the respective
end if landscapes (compare with Table I1), thus, both solutiors ar
i—it1 maximally away from each other in the search space. For the
end for Nsw operator, the distance between two redundant sequences
is half the diameter of its landscape. Usinge, the inverted
Figure 2. Outline of VNS algorithm solution can be reached in one operation as both solutions

are neighbors. In summary, th&;. neighborhood operator
seems most promising for LS, since it results in a smooth
timum, a systematic exploration of its entire neighborhoddndscape and induces a high locality of redundant solsition
is required. Since for large neighborhoods this can be comellowed by N, and N, where Ny, leads to a smoother
putational demanding, we use a different approach of VN&nhdscape compared A6, butNs, results in a higher locality
for the CS problem, inspired by [13]. Instead of applyin@f redundant solutions. Thus, we base our VNS on these three
the neighborhood operators in a predefined sequence, gyrators and assigh. a probability of 60% to be chosen
choose a neighborhood operator with a certain probabjlityat each step and/s,, and NV each a probability of 20%. We
at each step of the search. The operator is then applied to iggore theN,q operator since its normalized correlation length
current solution and the search proceeds with the new foupids low and it induces a low locality of redundant solutions.
neighboring solution if its fithess value is not worse conaplar
to the current solution. Allowing the search to continuehwit ] )
solutions having the same fitness value as the current solutB: Memetic Algorithm
is useful to traverse plateaus of equal fitness in the lapgsca Memetic algorithms (MA) [36] are a conjunction of evo-
The search is stopped after a maximum number of sdpg  Iutionary algorithms (EA) and local search (LS). Thus, they
is reached. The algorithm is outlined in Figure 2. combine the concept of population-based evolution with in-
The probabilities of the different neighborhood operatordividual learning. In the literature, MAs are also referited



Output: best solution found
InitialPopulation P + IBS(w)
EvaluateP)

Sort(P)
for i := 1 to Nya do
Parentsp,, po + TournamentSelectiog{ze = 2)
Offspring o1, 0o < Crossoveng;, p2)
Evaluate6,, 0s)
if 01.fitness< o,.fitnessthen
J 1
else
72
end if
0; < VNS(OJ)
x < oj with 2 being the last element i
for all x € P do
if RandomNumber(0,1X p,, then
x + Mutate(r)
end if
end for
for all x € P do
if RandomNumber(0,1X p;s then
x < VNS(z)
end if
end for
Sort(P)
1—1+1
end for

Figure 3. OQutline of MA

Parent1 1[5 [3[1[3]2]2]4]3]6|

-
Offspring 1 | 1[5 |1 |3 |3[2][2]3]6]4|

Parent 2 312|614 |1[2|5|1]3]3

Figure 4. Order Crossover (OX)

lection, recombination and mutation. At each generatioouof
MA approach, two solutions, named parents, are selected for
crossover by a binary tournament selection. The crossqver o
erator combines parts of both solutions in order to derive tw
offspring solutions. This corresponds to the reproduciion
biological evolution. In EAs, the crossover operator iscuge
intensify the search in promising areas of the landscaps, th
existing similarities of parent solutions should be preedr

in the offspring. This characteristic is called respectéss
[41] and is necessary for successful evolutionary sear2h [4
Especially in the presence of a big valley, respectful @ess

is likely to perform well, as high quality solutions can beifal

in the vicinity of other good solutions. The preceding FDC
analysis of section IlI-C suggests that the adjacency miista
metric is suited to describe similarities between high igyal
solutions for CS and even leads to a big valley. Therefore,
the crossover operator should preserve adjacent relats
of models existing in both parents.

We consider three recombination operators for CS, Order
Crossover (OX) [43] and propose a heuristic variant of OX

as hybrid genetic algorithms or genetic local search. They %hOX), as well as Non Conflict Position Crossover (NCPX),

S'ml'gl?r to. EAS |n.thic\tapg_pf)_ulgti)on of |InQ|V|duaI solutlti)r_(sa which showed good results in previous experiments [20].
problem is iteratively modified by evolutionary recombioat OX, outlined in Figure 4, randomly selects a subsequence

and mutation operators, in order to explore the search SPAteone parent and transfers it to the corresponding slots

and_guide the search to promising areas. In contrast o EAS, & one offspring. Beginning at the second crossover site of
additional local search is performed at each generr:ltlon:h/vh,[he offspring, the remaining models are allocated accgrdin

I(i)]cally 'mﬁrF’VGS individuals  of tlcli\ pci)]pulatlé)n to mtensn‘ft their occurrence in the second parent. OX preserves the
the search in promising areas. S nave been SUCCESSIWGq e positions of a subsequence in the first parent @d th

applied _to qther scheduling _problems like parallel-maehirielative order of models in the alternative parent. It idezhl

scheduling, Job-shpp s_chedulln_g or flow-shop scheduling, [3_a blind recombination operator as it uses no problem-specifi

[38]. Comprehensive introductions to MAs can be found i,y jedge. Additionally, we propose a heuristic varian©ot

[39] and [40]. Algorithm 3 out||ries ihe gengral ;tructurg _0(‘hOX), where we choose the subsequence of parent 1 such

our MA fqr the CS problem, which is described in detail Mhat it is delimited by violated slots. A slot is violated,tfe

the following. respective model at this slot induces at least one sequgncin
A population P in EAs consists of a set of individual ryle violation. If a sequence contains only one violated, slo

solutions. The size of the populatidé?| in MAs is usually the second crossover site is chosen randomly. The remaining

much smaller than in traditional EAs due to the CompleXitmodeB are assigned from the second parent the same way

of the local Seal’Ch, which inhibits the evolution of |arg%$ in OX, but starting at the first slot of the Offspring_ To

populations [24]. The initial population can be set up ranto apply hOX, a vector of length” indicating the violated slots

or obtained by a heuristic procedure. Using heuristics fier thas to be stored and updated during the search. The third

initialization phase usually improves the performance ©f gecombination operator NCPX is also a heuristic operatdr an

EA as fewer generations are needed to guide the populatighis proposed for CS in [20]. It is outlined for an example

to promising areas in the Seal’Ch Space. ThUS, we initialigéquence in Figure 5. First a random numb% hbtween 0

our population using a heuristic iterative beam search XIBgnd the number of non-violated slots is chosen. Our example

algorithm for CS [10] with beam widthv. has 7 non-violated slots and pamounts to 5. Then, a random
The population-based evolution in MAs is achieved by setarting point Pasis selected from which ppmodels at non-



Conflict POS| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | Me, thus, a random subsequence of a solution is reversed. We
perform mutation with probability,,, after recombination and
the local improvement of the best offspring. After mutation

Parent 1 | ! | > | 3 | ! | 3 | 2 | 2 | 4 | 3 | 6 | each generation concludes with another application of VNS.
The VNS is applied to each individual in the population

Offspring 1 [ 1|2 |5 |1]|3][2]3]4a[3]6]| depending on a certain probability,.
The MA is stopped after reaching the maximum number of

Posy Pos generationsVya .
L [5,3,1,2,3]
V. EXPERIMENTS
Figure 5. Non Conflict Position Crossover (NCPX) A. Experimental Setup

We evaluate the proposed algorithms on the problem in-

stances for CS available in the CSPLib, an online library of
violated slots are copied from parent one to the Corresp‘g’]diconstraint satisfaction problems. The instances are elivid
slots at the offspring. If the end of the sequence is meagwhiWo Sets. The first set consists of the aforementioned nine
reached, the copy process proceeds at the beginning of itgfances, all with a sequence length = 100, 5 options
sequence. After npmodels are copied, the remaining model@nd 19-26 models. The second set is composed of 30 larger
form a list of interestL. Another random positionPos is Problem instances with 200-400 production slots, 5 options
chosen, from which the models ihare assigned to the emptyand 19-26 models.
slots according to a heuristic function which considers the The algorithms are implemented in JAVA. All experiments
induced number of violations by a model as well as a s&4n on an Intel Xeon X5570 with 2.93GHz using 4GB RAM.
called utilization rate [11]. If models are tied in the ramg
number of violations as well as in the utilization rate an& orB. Results

of these model occupies the same slot in the second parenty,, algorithms are applied with parameters from Ta-
this model is selected. Alternatively, ties are broken canly. 1,10 v Wwe perform two versions of VNS with differ-

Note, that only in case of ties a second parent is consideredd)t neighborhood operators and probabilities for selgctin
NCPX and an offspring is created by merely a single pareffaighhorhoods. VNS corresponds to Section IV-A using
otherwise. NCPX preserves absolute positions ¢f models 5 get of three neighborhood operators with probabilities
of the parent solution. {Nre, Now, Nsn} = {0.6,0.2,0.2}. VNS, applies all neighbor-
We examine the resulting similarity of parents and offsprinnood operators of Section 111-A with equal probabilitielsys,
according to the adjacency distance meitjg; for the differ- {Now, Nag, Nen, NVie} = {0.25,0.25,0.25,0.25}. The initial
ent crossover operators. Therefore, 1000 recombinatio®s go|ution for both VNS’ is obtained by the aforementioned 1BS
performed with randomly selected parents for each crosso¥gyorithm with beam widtho = 5. Starting from the initial
operator and the adjacency distance between both pareffution, VNS and VNS are applied with a maximum of
is compared with the resulting average adjacency distangg 000*" moves, wherel is the number of production slots
between both offspring and parents. Figure 6 plots the t®syh the sequence and the best sequence found is returned.
for the representative instance 4-72. We can observe, tat O Fyrthermore, we consider three MA algorithms each with
and hOX produce offspring with a lower average distanGg different crossover operator. Thus, MAuses the Order
to both parents compared to NCPX. For both operators, tb?ossover, MAox the heuristic Order Crossover and Mébx
distance between offspring and parents becomes smaller Wie Non Conflict Position Crossover. All MAs have a popula-
decreasing distance between both parents. Thus, offsprifh size|P| of 20 individuals and the initial population is set
are likely to be produced in the vicinity of both parenfjy with the best 20 individuals found by the IBS algorithm
solutions. In contrast, NCPX doesn’'t seem to preserveiBgist yith . — 100. Within the MAs, VNS is applied with at most
adjacency relations as the average distances of the offspr500*7 moves. The mutation and local search probabilities
are independent of the distance between both parents.  are set to 0.05 and 0.1, respectively. Table VII shows the
After recombination, the offspring with the least numbeperformance results of the five considered algorithms oh bot
of violations is locally improved using the VNS algorithm ofsets of problem instances. The results are obtained by 10
Section IV-A. VNS introduces individual learning to the MA.independent runs of each algorithm on each instance. obj
The resulting solution replaces the current worst solution states the currently best known solutions as obtained by a
the populationP. Thus, we perform a so-called steady-staigenetic algorithm with a subsequent local search [20]. Bohe
selection scheme [44], where one individual in the popaiati algorithm and instance, we present the number of sequencing
is replaced at each generation. rules of the best solution found (column ’best obj.), the
The mutation operator is used for diversification imesulting average number of sequencing rules (column ’avg.
population-based EAs. It randomly changes individualshi t obj.), as well as the average time (column avg. time) in sggon
population in order to explore new regions in the searchespaequired for the 10 runs. To exemplify the results, the best
and prevent an early convergence to a single local optimuaverage objective values are highlighted in gray and new bes
In our MA, individuals are mutated by a single application ofolutions found are marked with an asterisk.
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Figure 6. Adjacency distancé, ; between random parents against the average adjacencyodigla;; between the resulting offspring and their parents
for different crossover operators (based on instance 4-72)

Table VII

RESULTS ON PROBLEM SETSL AND 2

instance OU] VNS; VNS2 MA ox MAhox MANCcPx

best avg avg.  best avg. avg. best avg. avg. best avg. avg.t beavg. avg.

obj. obj. time[s] obj. obj. time[s] obj. obj. time[s] obj. obj. inte[s] obj. obj.  time[s]
4-72 0 0 0.0 0.61 0 0.0 1.28 0 0.0 1.21 0 0.0 1.07 0 0.0 1.10
6-76 6 6 6.0 13.01 6 6.0 12.49 6 6.0 41.11 6 6.0 67.16 6 6.0 67.87
10-93 3 3 3.0 12.98 3 3.0 12.76 3 3.0 41.51 3 3.0 69.13 3 3.0 69.33
16-81 0 0 0.0 2.69 0 0.0 4.17 0 0.0 1.43 0 0.0 1.44 0 0.0 1.46
19-71 2 2 2.0 12.91 2 2.0 12.78 2 2.0 41.03 2 2.0 62.09 2 2.0 62.59
21-90 2 2 2.0 12.85 2 2.0 12.77 2 2.0 41.30 2 2.0 61.58 2 2.0 62.05
36-92 2 2 2.0 12.87 2 2.0 12.76 2 2.0 41.18 2 2.0 66.38 2 2.0 66.30
41-66 0 0 0.0 0.10 0 0.0 0.09 0 0.0 0.73 0 0.0 0.76 0 0.0 0.80
26-82 0 0 0.0 0.66 0 0.0 1.74 0 0.0 1.10 0 0.0 1.11 0 0.0 1.14
200-01 0 0 0.0 10.17 0 0.1 11.17 0 0.1 47.25 0 0.1 39.17 0.1 65.43
200-02 2 2 2.0 31.88 2 2.0 30.53 2 2.0 96.22 2 2.0 167.65 2 2.0 168.97
200-03 4 3 4.4 32.03 4 4.7 30.72 4 5.1 96.41 4 4.7  188.92 5.0 193.63
200-04 7 7 7.0 32.06 7 7.0 30.42 7 7.0 95.96 7 7.0 191.35 7 7.0 193.58
200-05 6 6 6.0 31.74 6 6.0 30.59 6 6.0 95.82 6 6.0 178.32 6 6.0 182.28
200-06 6 6 6.0 31.37 6 6.0 30.66 6 6.0 95.78 6 6.0 179.57 6 6.0 180.31
200-07 0 0 0.0 0.29 0 0.0 0.45 0 0.0 2.54 0 0.0 2.64 0 0.0 2.57
200-08 8 8 8.0 31.11 8 8.0 30.77 8 8.0 94.66 8 8.0 190.78 8 8.0 191.45
200-09 10 10 10.0 31.27 10 10.0 30.70 10 10.0 95.89 10 10.0 199.32 10 10.0 198.95
200-10 19 19 19.0 31.12 19 19.1 30.57 1¢ 19.0 94.62 19 19.0 223.98 19 19.0 224.70
300-01 0 0 0.0 18.82 0 0.4 39.84 0 0.6 121.15 0 0.4 207.64 0.4 212.76
300-02 12 12 12.0 54.75 12 12.0 52.25 12 12.0 168.08 12 12.0 351.28 12 12.0 350.90
300-03 13 13 13.0 53.61 13 13.0 52.30 13 13.0 163.45 13 13.0 351.87 13 13.0 356.48
300-04 7 7 7.2 53.83 7 7.4 52.17 T 7.1 163.74 7 7.1 329.10 7 7.1  340.02
300-05 29 27 29.2 54.72 29 29.9 52.02 29 29.7 162.74 29 29.7  398.45 29 29.84.92
300-06 2 2 2.0 55.63 2 2.2 51.92 2 3.1 164.27 2 3.2 308.74 3.3 312.04
300-07 0 0 0.0 3.63 0 0.0 6.80 0 0.0 15.16 0 0.0 19.55 0 0.0 20.63
300-08 8 8 8.0 53.87 8 8.0 52.02 8 8.0 163.97 8 8.0 333.13 8 8.0 336.66
300-09 7 7 7.0 54.96 7 7.3 52.09 7 7.0 162.38 7 7.0 345.58 7 7.0 345.86
300-10 21 21 21.0 55.27 21 21.1 52.11 21 21.0 159.86 21 21.0 390.76 21 21.0 400.17
400-01 1 1 11 83.29 1 1.3 77.44 1 1.8 24235 1 1.7 43235 1.9 43524
400-02 15 15 154 83.19 15 15.6 78.04 16 16.2  238.09 15 15.8 530.02 16 16.85.58
400-03 9 9 9.1 83.38 9 9.2 77.23 ¢ 9.0 24358 9 9.0 507.20 9 9.0 517.08
400-04 19 19 19.0 82.80 19 19.0 77.64 19 19.0 243.77 19 19.0 564.87 19 19.0 566.98
400-05 0 0 0.0 0.25 0 0.0 0.20 0 0.0 5.33 0 0.0 11.73 0 0.0 4.44
400-06 0 0 0.0 6.01 0 0.0 7.76 0 0.0 18.31 0 0.0 38.60 0 0.0 38.60
400-07 4 4 4.0 82.43 4 4.0 77.80 4 4.3 24432 4 4.0 47011 4 4.1 47497
400-08 4 4 4.0 81.69 4 4.0 77.84 4 40 243.84 4 40 466.17 4 40  468.50
400-09 5 5 6.6 81.64 6 6.9 78.09 6 6.8  242.96 6 6.9 519.20 6.9 524.94
400-10 0 0 0.0 6.55 0 0.0 11.98 0 0.0 7.04 0 0.0 11.68 0 0.0 10.79




Table VI
PARAMETERS OF ALGORITHMS IN THE EXPERIMENTS

Parameter VNS MA
IBS beam width w 5 100
Number of MA generations Nya - 100
Number of VNS moves Nyns  50,000*T"  500*T
Population size |P| - 20
Mutation probability Pm - 0.05
Local Search probability JJE] - 0.1
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the applied neighborhood operators could be used. Therefor
future research should address efficient algorithms orest le
good approximations to determine these distances. Further
insights should also be gained as to why local search in
general leads to better results than EAs for the CS problem.
We assume redundant solutions to have a negative effeceon th
solution quality of EAs. Other representations for CS or the
normalization of CS solutions prior to recombination slibul

Among the MAs, MAox results in the best average ob-
jective values on all but two instances. Furthermore, itgind[1]
the currently best known solution for each instance, except
instance 400-09. However, due to the heuristic Crossovey,
operator which requires to maintain the information about
violated slots during the search, the solution time of fdAdas  [3]
well as MAycpx is considerably larger than M#x. Compared
to MAncpx, MApx leads to better average objective valuegs)
on 5 instances and inferior values on 3 instances. Thus,
maintaining adjacency relationships between parent isolsit
during crossover, as in Méx and MAyox, seems promising.
Given that the differences in the solution quality of all M&®
not very large, the main contribution to the results is assim ol
to stem from the VNS operator and not the recombination
operator. This is also confirmed by the results of the YNSI7]
algorithm, which shows the overall best performance. It re-
quires considerably less time than the MA algorithms andsfind
the best known solutions for all instances and even improvelél
solutions with 3 and 27 violations for instances 200-03 and
300-05, respectively. Considering the average objectiees,
VNS, leads to the best results on 38 out of 40 instancesd!
When changing the applied neighborhood operators and their
probabilities, as in VN§ the solution quality on the instanceg1o]
of set two decreases.

(5]

[11]
VI. CONCLUSIONS

We analyze the fitness landscapes of a set of CS instances
by measuring the autocorrelation as well as fitness-distanc
correlation when four different neighborhood operatorsl ami2]
three distances are applied. The results show a smooth land-
scape in terms of the normalized correlation length for the
reverse, swap and shift neighborhood. The adjacency distan3]
is suitable to describe structural relations between mwist
as it leads to a high fitness-distance correlation. Furtbegm
a big valley structure can be identified when using the ag+4
jacency distance metric. The findings are included in two
metaheuristics for CS, a variable neighborhood search VNS
and a memetic algorithm (MA) evaluated with three differenis)
crossover operators. In experiments, we show the supgriori
of the VNS algorithm as it finds and even improves currentm
best known solutions for instances of the CSPLib. Despdeé th
the performances of the MA algorithms are inferior compared
to VNS, MAs with a crossover operator that respects the
adjacency distance metric have a better solution qualiy th
MAs without. (18]

The findings of the fitness-distance correlation analysis
would be more meaningful if the true distances according to

be analyzed and incorporated in EAs for CS.
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