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Fitness landscape analysis and design of
metaheuristics for car sequencing

Uli Golle

Abstract—We study the car sequencing (CS) problem, an NP-
hard combinatorial optimization problem which aims at finding a
production sequence of different models launched down a mixed-
model assembly line. The models are differentiated by a number
of selected options. For each option, a so-called sequencing rule
is applied which restricts the option occurrences in the sequence
in order to minimize the work overload of the respective line
operators. In this paper, we perform a fitness landscape analysis
of several instances of the CS problem, where we examine
the autocorrelation as well as fitness-distance correlation (FDC)
induced by four neighborhood operators and three distance
metrics. These results are subsequently employed for the design of
two metaheuristics for CS, a variable neighborhood search (VNS)
and a memetic algorithm (MA) evaluated with three different
crossover operators. The VNS shows superior performance and
even improves currently best known solutions of instances in the
CSPLib. Although the results of the MA algorithms are inferior
compared to VNS, applying crossover operators that respect the
adjacency distance metric lead to a better solution quality than
using other crossovers.

I. I NTRODUCTION

The car sequencing (CS) problem [1] is a combinatorial
optimization problem seeking a production sequence of vari-
ous models launched down a mixed-model assembly line. The
models are derived from a common base product and differ
in a number of selected options. Nevertheless, all models are
jointly manufactured on the same mixed-model assembly line
with a lot size of one. Since the processing times of the models
can vary and the line is balanced to an average model, a
sequence of consecutive work-intensive models may lead to
work overload of the respective line operators. Work overload
occurs, whenever an operator can not finish his assigned
tasks within the available station limits. These work overload
scenarios have to be compensated by other strategies, such as
employing additional utility workers or stopping the line.To
minimize the total amount of work overload, CS uses a so-
called sequencing rule of typeH : N for each selected option,
which restricts the occurrence of models having this option
to at mostH, in any subsequence ofN consecutive models.
The aim is to find a sequence, which meets the demand
for each model and satisfies all sequencing rules (constraint
satisfaction problem) or minimizes the number of sequencing
rule violations (optimization problem). CS belongs to the class
of NP-hard problems [2].

The concept of landscapes is an intuitive notion of the search
space, the set of all solutions to a combinatorial optimization
problem. A search algorithm navigates through the landscape
in order to find the best solution, usually the highest peak
or the lowest valley. Therefore, all solutions have to be
connected by a certain distance measure and the quality of

each solution is assessed using a so-called fitness function.
Thus, landscapes are often referred to as fitness landscapes.
The analysis of fitness landscapes can give valuable insights
into the characteristics of the search space. These informations
can be employed to design better search algorithms that
incorporate more problem-specific knowledge, which is crucial
for effective optimization algorithms.

In this paper, we study the resulting landscapes of four
neighborhood operators and three distance metrics for a set
of CS instances. We analyze local and global properties of
the landscapes by performing an autocorrelation and fitness
distance correlation analysis. The results of the landscape
analysis are employed to design two metaheuristics for CS,
a simple variable neighborhood search (VNS) as well as a
memetic algorithm (MA). Thereby, we propose a new heuristic
crossover operator for CS. The performance of the VNS and
the MA with the new crossover operator as well as two existing
ones is evaluated in experiments using widely applied CS
problem instances from the CSPLib. The main findings are:

1) Three out of the four neighborhood operators lead to
a smooth landscape for CS in terms of the normalized
correlation length.

2) All neighborhood operators and the adjacency distance
metric show a high fitness-distance correlation on all
instances and, thus according to [3], result in an ’easy’
problem for evolutionary algorithms.

3) In case of the adjacency distance metric, a ’big valley’
structure for CS is identified.

4) Incorporating the findings of the landscape analysis into
operators for the VNS and the MA leads to high quality
metaheuristics that find the best-known sequences for all
test instances and even improve the currently best solution
of two instances.

The remainder of the paper is organized as follows. In
Section II, we review relevant literature on CS and state its
optimization model. Section III presents four neighborhood
operators proposed for CS and studies characteristics of the
fitness landscapes resulting from these operators. The insights
gained from Section III are used in Section IV to design a VNS
as well as a MA for CS. The performance of the metaheuristics
is evaluated in experiments in Section V. Section VI concludes
the paper.

II. T HE CAR SEQUENCING PROBLEM

The CS problem stems from applications in the automo-
bile industry and was first introduced by [1]. As its related
approach of Mixed-Model Sequencing (MMS) [4], it aims
at finding a sequence of different models to be produced at
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Table I
NOTATIONS

T number of production slots (indext)
M number of models (indexm)
O number of options (indexo)
dm demand for modelm
aom binary demand coefficient: 1, if modelm requires

option o, 0 otherwise
Ho : No sequencing rule: at mostHo out of No successively

sequenced models require optiono
xmt binary variable: 1, if modelm is produced in slott,

0 otherwise
yot binary variable: 1, if sequencing rule defined for

option o is violated in window starting in cyclet
BI Big Integer

a mixed-model assembly line with minimum work overload.
Work overload occurs, whenever a line operator can not finish
his assigned assembly tasks due to a consecutive order of
work-load intensive models in the sequence. In contrast to
MMS, CS applies a surrogate objective for the minimization
of work overload. Given a pool of different models, which
can be distinguished by selected binary options (such as
having an air conditioning or not in case of car models),
CS restricts the occurrences of each optiono ∈ O in the
sequence by using so-called sequencing rulesHo : No. A
sequencing rule allows onlyHo models having optiono in
any subsequence ofNo consecutive models. For instance, a
sequencing rule of 3:5 for the option ’sunroof’ requires that
at most 3 out of 5 consecutive models contain a sunroof. If
more models have a sunroof, a violation of the respective
sequencing rule occurs. The aim of CS is to find a production
sequence containing all models in the pool and inducing the
minimum overall number of rule violations. It is assumed that
the minimization of sequencing rule violations simultaneously
leads to the underlying goal of minimizing the total amount of
work overload. With notations from Table I, the CS problem
is formulated as an integer linear program as follows [5]:

CS: Minimize
∑

o∈O

T−No+1
∑

t=1

yot (1)

T
∑

t=1

xmt = dm ∀m ∈M (2)

∑

m∈M

xmt = 1 ∀t = 1, . . . , T (3)

t+No−1
∑

t′=t

∑

m∈M

xmt′ · amo ≤ Ho + yot ·BI

∀o ∈ O; t = 1, . . . , T −No + 1

(4)

xmt ∈ {0, 1} ∀m ∈M ; t = 1, . . . , T (5)

yot ∈ {0, 1} ∀o ∈ O; t = 1, . . . , T (6)

yot indicates whether a rule violation of optiono occurs in
a subsequence starting at positiont. The objective function
(1) minimizes the overall number of rule violations. The
resulting sequence has to meet the required demanddm for
each modelm ∈ M (2) and is allowed to contain exactly

one model at each production slott (3). Constraints (4) check
for rule violations. We apply the sliding-window approach,
where a violation of a subsequence is always assessed with
one violation in the objective function [5]. Finally, (5) and (6)
ensure variablesxmt andyot to be binary.

Since CS is NP-hard in the strong sense [2], various exact,
heuristic and hybrid search procedures have been developed
in order to solve the problem [6], [7]. Among the exact
approaches are integer linear programming (ILP) formulations.
While [5] present the aforementioned basic ILP, the ILP by [8]
focuses on option assignments to the sequence instead of mod-
els and also includes constraints of the preceding paint shop.
[9] propose a scattered branch & bound algorithm introducing
new lower bounds and dominance rules for CS. Their bounds
are further improved by [10], who solve a graph representation
of CS with an exact iterative beam search algorithm which is,
according to experimental results, currently the best-known
exact algorithm for CS.

As for heuristics and metaheuristics, different approaches
including construction heuristics, local searches, evolutionary
algorithms and ant colony optimizations have been developed.
In [11], different greedy heuristics for the optimization version
of CS are studied and applied in local search as well as ant
colony algorithms. In [12] the constraint satisfaction version
of CS is addressed and different value ordering heuristics to
construct an optimal sequence are proposed. Different local
search procedures are introduced in [13] including greedy as
well as threshold accepting algorithms that employ a set of
various neighborhood operators. A large neighborhood search
is also introduced in [14] using different move operators
and search strategies. In [15] and [16] an industrial version
of CS with instances having more than 1000 models and
including paint shop constraints and the distinction between
hard and soft constraints, is solved by local search applying
variable neighborhoods. Among evolutionary approaches, a
genetic algorithm (GA) is developed in [17] using a ver-
sion of adaptive template type crossover and performing hill
climbing as mutation operator. For the industrial version of
CS, a genetic local search procedure is designed in [18]. The
authors introduce a crossover operator that preserves common
subsequences in both parents and apply a local search using
a shift neighborhood after each recombination. In [19] a
standard GA is combined with squeaky-wheel optimization,
where sequences are iteratively constructed and improved by
adaptive priority rules. A series of new crossover operators for
GAs is presented in [20], showing good results on instances
of the CSPLib. These results are further improved by applying
a subsequent local search. Furthermore, ant colony optimiza-
tions are presented in [11], [5], [21], [22] applying different
pheromone trails and transition rules. In summary, local search
procedures applying a set of neighborhood operators show the
overall best results on CS instances.

Few authors provide hybrid algorithms for CS, combining
exact and heuristic approaches. In [8] an ILP is incorporated
into a variable local search procedure producing competitive
results for the industrial version of CS. In [23] the authors
previous GA approach is extended by incorporating ILP for-
mulations into the crossover operator. The solution quality of
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the resulting GA on the CSPLib instances is increased, but at
the cost of a very high runtime.

III. F ITNESSLANDSCAPEANALYSIS OF CAR SEQUENCING

In general, a fitness landscape(X , f, d) of an instance of
a combinatorial optimization problem consists of a set of
solutionsX , a fitness function (objective function)f : X → R,
which assigns an objective value to each of the solutions inX ,
and a distance measured, which defines the spatial structure
of the landscape. For the notion of distances a so-called
neighborhood operatorN is applied.N converts a solution
x ∈ X into a new solutionx′ ∈ N (x) ⊆ X by changing
the composition ofx. With the neighborhood operatorN ,
the search space can be interpreted as an undirected graph
GN = (X , E) with X being the vertices of the graph and
edge setE = {(x, x′) ∈ X × X | x′ ∈ N (x)} introducing an
edge betweenx andx′, if x′ can be reached fromx by one
application ofN or vice versa. The distanced(x, y) between
two solution x and y is then defined as the length of the
shortest path fromx to y in GN , which equals the minimum
number of applications ofN to transformx into y or vice
versa.

For CS, we analyze the fitness landscapes for a set of
nine widely applied problem instances in the literature. The
instances are available in the CSPLib, an online library for
constraint satisfaction problems. Each instance hasT = 100
production slots,M = 19-26 models withO = 5 options
to be sequenced. For every instance, we generate different
fitness landscapes using equation (1) as fitness function and
four neighborhood operators found in the literature [13]. We
study the autocorrelation of the resulting landscapes in terms
of a random walk analysis and perform a fitness-distance
correlation analysis.

A. Representation and Neighborhood Operators

A solution for CS is represented by a permutation with
repetitions. Thus, a sequence is encoded as a vector of length
T , where a valuem ∈ M at positiont = 1, . . . , T indicates
that a copy of modelm is produced at thetth production
slot. We only consider feasible solutions, where the sum
of occurrences of each modelm ∈ M in the sequence
corresponds to the models demanddm. This is ensured by
an appropriate initialization of solutions and neighborhood
operators that maintain feasibility.

For the fitness landscape analysis of CS, we consider four
different neighborhood operatorsN [13], that are currently
applied in the literature. The operators are along the line of
operators for the traveling salesman problem:

• Swap neighborhoodNsw: Two models in the sequences
exchange their positions.

• Adjacent swap neighborhoodNad: Two adjacent models
in the sequences exchange their positions.

• Shift neighborhoodNsh: A model is forward or backward
shifted a certain number of positions in the sequence.

• Reverse neighborhoodNre: The order of a subsequence
of models is reversed.

B. Autocorrelation

The autocorrelation analysis studies the ruggedness of a
landscape, which is important for local search procedures.A
fitness landscape is said to be rugged, if no correlation between
the distance of solutions and their fitness values exists. Thus,
a small distance between two solutions can imply a large
difference in their objective values. Rugged landscapes are
difficult to search for guided local search methods, which
traverse the search space by iteratively sampling new solutions
in the neighborhood of a current solution. Thereby, the fitness
value of the current solution is employed to decide whether
the search proceeds with one neighboring solution or not. The
search is guided from low quality solutions to higher quality
solutions in order to find the global optimum. However, on a
rugged landscape, the fitness values of neighboring solutions
are not correlated and can, therefore, not be used to guide the
search process, which results in a merely random search. In
contrast, if a correlation between the distance and the fitness
value of solutions exists, the respective landscape is saidto be
smooth and is adequate for guided local search methods.

In [24] the autocorrelation function is introduced to compute
the ruggedness of a landscape. The approach requires to
evaluate the entire search space of a problem instance, thus,
all solutions inX . Since for many optimization problems,
including CS, the number of solutions increases exponentially
depending on some input factor, Weinberger [25] proposes to
use a random walk to estimate the autocorrelation. Beginning
with an arbitrary solution, a random walk picks a random
solution in the neighborhood of the current solution and
proceeds the walk with the new solution. This move is repeated
until a maximum numberm of walking steps is reached. The
fitness valuesf(x) of all solutionsx visited during the walk
are used to compute the random walk correlation functionr(s)
as follows

r(s) =
1

σ2(f)(m− s)

m−s
∑

t=1

(f(xt)− f)(f(xt+s)− f) (7)

With σ2(f) being the variance of the fitness values,r(s)
computes the correlation of all solutions that ares steps
away along the random walk of lengthm. Based on the
nearest-neighbor correlation of the landscaper(1), which is
the correlation of neighboring solutions, the correlationlength
l of the landscape is defined as [26]

l =

{

0, if r(1) = 0

− 1
ln(|r(1)|) , if r(1) 6= 0

(8)

l reflects the ruggedness of the landscape. The lower the
correlation length the more rugged the landscape. Since the
correlation length depends on the applied neighborhood oper-
ator as well as on the size of the instance, different instances
and/or neighborhood operators should be compared by the
normalized correlation lengthl′ [27, p. 229]

l′ =
l

diam(GN )
(9)
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Table II
DIAMETERS OF NEIGHBORHOOD OPERATORS

Nsw T − 1

Nad
T (T−1)

2
Nsh T − 1

Nre T − 1

with diam(GN ) being the diameter of the search space,
which is the maximum distance of any two solutions inGN .
The diameters of the considered neighborhood operators are
listed in Table II.

For each CS instance, we get four different fitness land-
scapes by applying the neighborhood operators of Section
III-A together with equation (1) as fitness function. To measure
the autocorrelation of the resulting landscapes, we perform a
random walk with 100,000 steps on each landscape and deter-
mine the random walk correlation coefficient of neighboring
solutionsr(1) and the normalized correlation lengthl′. Table
III shows the respective results.

The results of the correlation coefficientsr(1) suggest a
smooth landscape for all instances and neighborhood oper-
ators, especially forNad. However, sinceNad has a larger
diameter as compared to the other operators, the normalized
correlation lengthsl′, suggestsNsh,Nre andNsw to be favor-
able for local search procedures.

C. Fitness-Distance-Correlation

The Fitness-Distance-Correlation (FDC) [3] is a measure
for problem difficulty for evolutionary algorithms. The FDC
measures the correlation between the fitness differences ofa
solution and the global best solution and their distances in
the search space. Thus, with a sample of solutions, the FDC
coefficient̺ is defined as

̺(f, dopt) =
cov(f, dopt)

σ(f)σ(dopt)
(10)

with dopt being a solutions distance to the nearest optimal
solution and cov(f, dopt) the covariance off and dopt. A
value of̺ = 1 indicates a perfect correlation between fitness
and distance to the optimum. The more both values are
correlated, the easier the resulting problem is for selection-
based algorithms as a path of solutions with increasing fitness
values leads to the optimum [24]. The problem difficulty can
be classified [3] according to̺. A value of ̺ ≥ 0.15 sug-
gests a straightforward minimization problem for evolutionary
algorithms, while lower values of̺ indicate an uncorrelated
or even misleading landscape. The FDC coefficient can be
computed for random solutions as well as locally optimal
solutions. The usage of locally optimal solutions can give
further insights into the global structure of the search space
[24]. Additionally, fitness-distance plots are suitable for the
interpretation of the results.

To compute the FDC coefficient, the distances between
solutions have to be known. The actual distance between two
solutions is the minimum number of a specific neighborhood

operation in order to transform one solution into another. How-
ever, the computation of the distances is not straightforward
for every neighborhood operator in Section III-A. For instance,
no polynomial algorithm is available to compute the distances
of theNre operator [28]. Thus, in order to allow a comparison
of the resulting FDC coefficients for different neighborhood
operators, we apply the following surrogate distance metrics
[29]:

• Adjacency distance metricdadj : The bidirectional adja-
cency distance computes how often a pair of models is
adjacent in both sequences

• Precedence distance metricdprec: The precedence dis-
tance computes how often a modelm is preceded by a
modelm′ in both sequences.

• Absolute position distance metricdabs: The absolute po-
sition distance computes the number of times the position
of models is identical in both sequences.

The combination of the four neighborhood operators with
the three distance approximations leads to twelve fitness
landscapes overall for each instance. For each neighborhood
operator, we determine 1000 local optima by applying a
steepest ascent hill climbing algorithm using the respective
operator which starts from a random solution and stops if
a local optimum is reached. The global optimum for each
instance is known, except for instance 19-71, where we
use the best known solution instead. The global optima are
obtained by an iterative beam search (IBS) algorithm [10]. The
FDC coefficients are calculated for the distance to the global
optimum (̺ global) as well as for the average distances to all
other local optima (̺local). Table IV presents the respective
results.

The results suggest that the adjacency distancedadj is the
best metric to describe structural properties of local optimal
solutions, as the resulting correlation coefficients are higher
compared to the other metrics. Thus, a certain amount of
adjacent model pairs are shared by high quality solutions. Ac-
cording to [3],̺global ≥ 0.15 and̺local ≥ 0.15 indicate that
the resulting landscapes for all instances and neighborhood
operators are suitable for EAs using the adjacency distance
metric. A value of ̺global ≥ 0.15 means, that the fitness
and the distance to the global best solution are positively
correlated since the smaller the distance to the global best
solution the lower the fitness value of a solution. Note, thatin
our case solutions with a low fitness are favored, since CS is a
minimization problem.̺ local ≥ 0.15 indicates that the lower
the fitness value of a solution the smaller the average distance
to all other local optima. Thus, high quality local optima lie
in the center of other local optima.

In Figure 1, we show some scatter plots for a representative
example using instance 10-93 andNre. Figures 1(a) and 1(b)
plot for each local optimum its adjacency distance to the
global optimum and its average adjacency distance to all other
local optima, respectively, against its absolute fitness deviation
to the global optimum. We can observe the aforementioned
positive correlation between the adjacency distance and the
fitness of a solution. Furthermore, all local optima are clustered
in a small region of the search space as the maximum
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Table III
RANDOM WALK CORRELATION COEFFICIENTS AND NORMALIZED CORRELATION LENGTHS

instance r(1) l’
Nsw Nad Nsh Nre Nsw Nad Nsh Nre

4-72 0.9512 0.9880 0.9648 0.9621 0.2019 0.0167 0.2817 0.2614
6-76 0.9543 0.9878 0.9671 0.9646 0.2162 0.0165 0.3015 0.2805
10-93 0.9526 0.9877 0.9654 0.9631 0.2082 0.0163 0.2867 0.2683
16-81 0.9516 0.9876 0.9642 0.9621 0.2038 0.0162 0.2775 0.2613
19-71 0.9533 0.9880 0.9654 0.9637 0.2111 0.0168 0.2867 0.2732
21-90 0.9550 0.9879 0.9673 0.9648 0.2195 0.0166 0.3040 0.2821
26-92 0.9540 0.9886 0.9668 0.9641 0.2147 0.0176 0.2994 0.2765
41-66 0.9540 0.9887 0.9677 0.9648 0.2143 0.0178 0.3076 0.2820
26-82 0.9537 0.9885 0.9658 0.9642 0.2130 0.0175 0.2902 0.2767

Table IV
FITNESS-DISTANCE CORRELATION COEFFICIENTS̺

instance Nsw Nad Nsh Nre

dadj dprec dabs dadj dprec dabs dadj dprec dabs dadj dprec dabs

4-72
̺global 0.385 0.041 0.110 0.419 0.302 0.023 0.404 0.001 0.015 0.504 0.106 0.117
̺local 0.343 0.025 0.194 0.319 -0.085 -0.416 0.451 0.074 -0.069 0.510 0.127 0.245

6-76
̺global 0.256 -0.024 0.015 0.388 0.054 -0.109 0.283 0.006 -0.062 0.319 0.048 0.102
̺local 0.365 0.032 0.076 0.284 -0.077 -0.387 0.429 0.073 -0.019 0.466 0.031 0.126

10-93
̺global 0.260 -0.062 -0.005 0.575 0.276 -0.012 0.350 -0.039 -0.015 0.504 -0.001 0.063
̺local 0.340 -0.027 0.009 0.237 -0.146 -0.441 0.436 -0.065 -0.112 0.579 0.019 0.094

16-81
̺global 0.300 0.056 0.044 0.451 0.256 0.077 0.357 0.061 0.060 0.470 0.102 0.103
̺local 0.425 -0.038 0.136 0.288 -0.054 -0.264 0.419 0.020 -0.026 0.557 0.070 0.158

19-71
̺global 0.202 0.030 0.045 0.565 0.282 -0.061 0.317 0.036 0.039 0.3360.082 0.042
̺local 0.354 0.026 0.076 0.165 -0.156 -0.507 0.451 -0.035 -0.140 0.541 0.112 0.148

21-90
̺global 0.306 -0.010 0.043 0.541 0.286 0.003 0.309 0.006 0.021 0.3640.045 0.063
̺local 0.375 0.038 0.062 0.268 -0.067 -0.372 0.469 -0.001 -0.034 0.573 -0.004 0.158

36-92
̺global 0.191 0.068 0.041 0.610 0.138 -0.168 0.317 0.006 -0.039 0.384 0.022 0.071
̺local 0.359 0.034 0.111 0.135 -0.139 -0.476 0.465 0.011 -0.121 0.559 0.114 0.208

41-66
̺global 0.112 0.024 0.002 0.427 0.048 -0.062 0.187 -0.189 -0.077 0.199 0.030 0.081
̺local 0.256 0.044 0.105 0.222 -0.175 -0.368 0.406 -0.086 -0.187 0.384 0.004 0.102

26-82
̺global 0.289 0.010 0.090 0.525 0.316 -0.015 0.322 -0.068 0.025 0.403 0.088 0.024
̺local 0.367 0.052 0.194 0.242 -0.108 -0.512 0.413 -0.022 0.041 0.503 0.085 0.164

distance between any two local optima is 12,15 (see Figure
1(b)). Figures 1(c) and 1(d) present the scatter plots for the
precedence distance and absolute distance, respectively,of
each solution to the global optimum against its absolute fitness
deviation to the global optimum. Both distance metrics seem
to have a low correlation which confirms the results of Table
IV. Again, for dprec, the local optima appear to be grouped in
a small region around the global optimum, whereas, fordabs,
the distances to the global optimum are close to the diameter
of the search space which suggests that the local optima are
evenly distributed in the landscape. Interpreting the plots, we
assume the existence of a ’big valley’ structure fordadj , since
local optima are accumulated in a small region of the search
space with high quality solutions being in the center of the
local optima.

IV. M ETAHEURISTICS FORCAR SEQUENCING

In this section, we describe two metaheuristics for CS, a
variable neighborhood search (VNS) and a memetic algorithm
(MA), whose designs are based on the results of the preceding
landscape analysis.

A. Variable Neighborhood Search

Local search (LS) algorithms explore the fitness landscape
of a problem instance by iteratively moving from one solution
to a new neighboring solution with a better fitness, until a
local optimum is reached. In order to avoid being trapped in
the first local optimum found, several metaheuristics based
on LS have been developed, like simulated annealing [30],
which accepts worse solutions with a certain probability, or
tabu search [31], where the last visited solutions are stored in
a tabu list so that they are not revisited repeatedly. A different
metaheuristic, called variable neighborhood search (VNS)was
proposed by [32], where instead of merely one neighborhood
operator, a set of neighborhoods is applied. Thus, VNS can
escape a local optimum in one landscape, by using a different
neighborhood operator and, thus, changing the landscape. The
original scheme of VNS arranges all neighborhood operators
in a certain sequence with increasing neighborhood size. If
VNS experiences a local optimum using one neighborhood
operator, the search proceeds with the next operator in the list
until a certain stopping criterion is reached.

In order to decide if the current solution is a local op-
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Figure 1. Scatter plots for instance 10-93 andNre based on 1000 local
optima.

Input: initial solution x

Output: best solution found
Initialize probabilitiesρ
Evaluate(x)
for i := 1 to NVNS do
N ← SelectNeighborhoodOperator(ρ)
x′ ← N (x)
Evaluate(x′)
if x′.fitness ≤ x.fitness then
x← x′

end if
i← i+ 1

end for

Figure 2. Outline of VNS algorithm

timum, a systematic exploration of its entire neighborhood
is required. Since for large neighborhoods this can be com-
putational demanding, we use a different approach of VNS
for the CS problem, inspired by [13]. Instead of applying
the neighborhood operators in a predefined sequence, we
choose a neighborhood operator with a certain probabilityp

at each step of the search. The operator is then applied to the
current solution and the search proceeds with the new found
neighboring solution if its fitness value is not worse compared
to the current solution. Allowing the search to continue with
solutions having the same fitness value as the current solution
is useful to traverse plateaus of equal fitness in the landscape.
The search is stopped after a maximum number of stepsNVNS

is reached. The algorithm is outlined in Figure 2.
The probabilitiesp of the different neighborhood operators

Table V
DISTANCES BETWEEN REDUNDANTCS SOLUTIONS

Nswa

{

T
2

, for evenT
T−1
2

, for oddT

Nadj
T (T−1)

2
Nins T − 1

Nrev 1

are obtained using the results of Section III-B, where the
autocorrelation of the landscape induced by each operator is
analyzed. It is assumed that the smoother the landscape, the
better the performance of LS [27]. Regarding the normalized
correlation lengthsl′ in Table III, the shift operatorNsh

leads to the smoothest landscape, followed byNre andNsw.
However, we also have to consider the locality induced by our
representation and neighborhood operators [33], [34]. Locality
describes how well the genotypic neighborhood correspondsto
the phenotypic neighborhood of a solution [35]. Our represen-
tation of solutions leads to redundant solutions in the genotypic
search space, as for each sequence a symmetric solution
with equal fitness can be found by inverting the sequence. A
neighborhood operator which induces a large distance between
both, the sequence and its inverted counterpart, results ina
low locality, as two actually identical areas in the genotypic
landscape are far away from each other. Thus, high quality
solutions are also clustered in two regions of the search space,
from which merely one is explored by a LS algorithm. In
contrast, LS benefits from a small distance between both
redundant solutions as the search can be intensified in one
small area of the search space where high quality solutions
are concentrated. For each neighborhood operator, the distance
between a sequence and its inverted counterpart is shown in
Table V.

For theNad and Nsh operator, the distance between two
redundant solutions equals the diameter of the respective
landscapes (compare with Table II), thus, both solutions are
maximally away from each other in the search space. For the
Nsw operator, the distance between two redundant sequences
is half the diameter of its landscape. UsingNre, the inverted
solution can be reached in one operation as both solutions
are neighbors. In summary, theNre neighborhood operator
seems most promising for LS, since it results in a smooth
landscape and induces a high locality of redundant solutions.
Followed byNsw andNsh, whereNsh leads to a smoother
landscape compared toNsw, butNsw results in a higher locality
of redundant solutions. Thus, we base our VNS on these three
operators and assignNre a probability of 60% to be chosen
at each step andNsw andNsh each a probability of 20%. We
ignore theNad operator since its normalized correlation length
l′ is low and it induces a low locality of redundant solutions.

B. Memetic Algorithm

Memetic algorithms (MA) [36] are a conjunction of evo-
lutionary algorithms (EA) and local search (LS). Thus, they
combine the concept of population-based evolution with in-
dividual learning. In the literature, MAs are also referredto
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Output: best solution found
InitialPopulationP ← IBS(ω)
Evaluate(P )
Sort(P )
for i := 1 to NMA do

Parentsp1, p2 ← TournamentSelection(size = 2)
Offspring o1, o2 ← Crossover(p1, p2)
Evaluate(o1, o2)
if o1.fitness≤ o2.fitnessthen
j ← 1

else
j ← 2

end if
oj ← VNS(oj)
x← oj with x being the last element inP
for all x ∈ P do

if RandomNumber(0,1)≤ pm then
x← Mutate(x)

end if
end for
for all x ∈ P do

if RandomNumber(0,1)≤ pls then
x← VNS(x)

end if
end for
Sort(P )
i← i+ 1

end for

Figure 3. Outline of MA

as hybrid genetic algorithms or genetic local search. They are
similar to EAs in that a population of individual solutions to a
problem is iteratively modified by evolutionary recombination
and mutation operators, in order to explore the search space
and guide the search to promising areas. In contrast to EAs, an
additional local search is performed at each generation, which
locally improves individuals of the population to intensify
the search in promising areas. MAs have been successfully
applied to other scheduling problems like parallel-machine
scheduling, job-shop scheduling or flow-shop scheduling [37],
[38]. Comprehensive introductions to MAs can be found in
[39] and [40]. Algorithm 3 outlines the general structure of
our MA for the CS problem, which is described in detail in
the following.

A population P in EAs consists of a set of individual
solutions. The size of the population|P | in MAs is usually
much smaller than in traditional EAs due to the complexity
of the local search, which inhibits the evolution of large
populations [24]. The initial population can be set up randomly
or obtained by a heuristic procedure. Using heuristics for the
initialization phase usually improves the performance of an
EA as fewer generations are needed to guide the population
to promising areas in the search space. Thus, we initialize
our population using a heuristic iterative beam search (IBS)
algorithm for CS [10] with beam widthω.

The population-based evolution in MAs is achieved by se-

Parent 1 1 5 3 1 3 2 2 4 3 6

Parent 2 3 2 6 4 1 2 5 1 3 3

Offspring 1 1 5 1 3 3 2 2 3 6 4

Figure 4. Order Crossover (OX)

lection, recombination and mutation. At each generation ofour
MA approach, two solutions, named parents, are selected for
crossover by a binary tournament selection. The crossover op-
erator combines parts of both solutions in order to derive two
offspring solutions. This corresponds to the reproductionin
biological evolution. In EAs, the crossover operator is used to
intensify the search in promising areas of the landscape, thus,
existing similarities of parent solutions should be preserved
in the offspring. This characteristic is called respectfulness
[41] and is necessary for successful evolutionary search [42].
Especially in the presence of a big valley, respectful crossover
is likely to perform well, as high quality solutions can be found
in the vicinity of other good solutions. The preceding FDC
analysis of section III-C suggests that the adjacency distance
metric is suited to describe similarities between high quality
solutions for CS and even leads to a big valley. Therefore,
the crossover operator should preserve adjacent relationships
of models existing in both parents.

We consider three recombination operators for CS, Order
Crossover (OX) [43] and propose a heuristic variant of OX
(hOX), as well as Non Conflict Position Crossover (NCPX),
which showed good results in previous experiments [20].
OX, outlined in Figure 4, randomly selects a subsequence
of one parent and transfers it to the corresponding slots
of one offspring. Beginning at the second crossover site of
the offspring, the remaining models are allocated according
to their occurrence in the second parent. OX preserves the
absolute positions of a subsequence in the first parent and the
relative order of models in the alternative parent. It is called
a blind recombination operator as it uses no problem-specific
knowledge. Additionally, we propose a heuristic variant ofOX
(hOX), where we choose the subsequence of parent 1 such
that it is delimited by violated slots. A slot is violated, ifthe
respective model at this slot induces at least one sequencing
rule violation. If a sequence contains only one violated slot,
the second crossover site is chosen randomly. The remaining
models are assigned from the second parent the same way
as in OX, but starting at the first slot of the offspring. To
apply hOX, a vector of lengthT indicating the violated slots
has to be stored and updated during the search. The third
recombination operator NCPX is also a heuristic operator and
was proposed for CS in [20]. It is outlined for an example
sequence in Figure 5. First a random number nbg between 0
and the number of non-violated slots is chosen. Our example
has 7 non-violated slots and nbg amounts to 5. Then, a random
starting point Posd is selected from which nbg models at non-
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Figure 5. Non Conflict Position Crossover (NCPX)

violated slots are copied from parent one to the corresponding
slots at the offspring. If the end of the sequence is meanwhile
reached, the copy process proceeds at the beginning of the
sequence. After nbg models are copied, the remaining models
form a list of interestL. Another random positionPos is
chosen, from which the models inL are assigned to the empty
slots according to a heuristic function which considers the
induced number of violations by a model as well as a so-
called utilization rate [11]. If models are tied in the resulting
number of violations as well as in the utilization rate and one
of these model occupies the same slot in the second parent,
this model is selected. Alternatively, ties are broken randomly.
Note, that only in case of ties a second parent is considered by
NCPX and an offspring is created by merely a single parent,
otherwise. NCPX preserves absolute positions of nbg models
of the parent solution.

We examine the resulting similarity of parents and offspring
according to the adjacency distance metricdadj for the differ-
ent crossover operators. Therefore, 1000 recombinations are
performed with randomly selected parents for each crossover
operator and the adjacency distance between both parents
is compared with the resulting average adjacency distance
between both offspring and parents. Figure 6 plots the results
for the representative instance 4-72. We can observe, that OX
and hOX produce offspring with a lower average distance
to both parents compared to NCPX. For both operators, the
distance between offspring and parents becomes smaller with
decreasing distance between both parents. Thus, offspring
are likely to be produced in the vicinity of both parent
solutions. In contrast, NCPX doesn’t seem to preserve existing
adjacency relations as the average distances of the offspring
are independent of the distance between both parents.

After recombination, the offspring with the least number
of violations is locally improved using the VNS algorithm of
Section IV-A. VNS introduces individual learning to the MA.
The resulting solution replaces the current worst solutionin
the populationP . Thus, we perform a so-called steady-state
selection scheme [44], where one individual in the population
is replaced at each generation.

The mutation operator is used for diversification in
population-based EAs. It randomly changes individuals in the
population in order to explore new regions in the search space
and prevent an early convergence to a single local optimum.
In our MA, individuals are mutated by a single application of

Nre, thus, a random subsequence of a solution is reversed. We
perform mutation with probabilitypm after recombination and
the local improvement of the best offspring. After mutation,
each generation concludes with another application of VNS.
The VNS is applied to each individual in the population
depending on a certain probabilitypls.

The MA is stopped after reaching the maximum number of
generationsNMA .

V. EXPERIMENTS

A. Experimental Setup

We evaluate the proposed algorithms on the problem in-
stances for CS available in the CSPLib, an online library of
constraint satisfaction problems. The instances are divided in
two sets. The first set consists of the aforementioned nine
instances, all with a sequence lengthT = 100, 5 options
and 19-26 models. The second set is composed of 30 larger
problem instances with 200-400 production slots, 5 options
and 19-26 models.

The algorithms are implemented in JAVA. All experiments
run on an Intel Xeon X5570 with 2.93GHz using 4GB RAM.

B. Results

The algorithms are applied with parameters from Ta-
ble VI. We perform two versions of VNS with differ-
ent neighborhood operators and probabilities for selecting
neighborhoods. VNS1 corresponds to Section IV-A using
a set of three neighborhood operators with probabilities
{Nre,Nsw,Nsh} = {0.6, 0.2, 0.2}. VNS2 applies all neighbor-
hood operators of Section III-A with equal probabilities, thus,
{Nsw,Nad,Nsh,Nre} = {0.25, 0.25, 0.25, 0.25}. The initial
solution for both VNS’ is obtained by the aforementioned IBS
algorithm with beam widthω = 5. Starting from the initial
solution, VNS1 and VNS2 are applied with a maximum of
50,000*T moves, whereT is the number of production slots
in the sequence and the best sequence found is returned.

Furthermore, we consider three MA algorithms each with
a different crossover operator. Thus, MAOX uses the Order
Crossover, MAhOX the heuristic Order Crossover and MANCPX

the Non Conflict Position Crossover. All MAs have a popula-
tion size|P | of 20 individuals and the initial population is set
up with the best 20 individuals found by the IBS algorithm
with ω = 100. Within the MAs, VNS1 is applied with at most
500*T moves. The mutation and local search probabilities
are set to 0.05 and 0.1, respectively. Table VII shows the
performance results of the five considered algorithms on both
sets of problem instances. The results are obtained by 10
independent runs of each algorithm on each instance. obj∗

states the currently best known solutions as obtained by a
genetic algorithm with a subsequent local search [20]. For each
algorithm and instance, we present the number of sequencing
rules of the best solution found (column ’best obj.’), the
resulting average number of sequencing rules (column ’avg.
obj.), as well as the average time (column avg. time) in seconds
required for the 10 runs. To exemplify the results, the best
average objective values are highlighted in gray and new best
solutions found are marked with an asterisk.
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(a) Order Crossover (OX)
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(NCPX)

Figure 6. Adjacency distancedadj between random parents against the average adjacency distancedadj between the resulting offspring and their parents
for different crossover operators (based on instance 4-72).

Table VII
RESULTS ON PROBLEM SETS1 AND 2

instance obj∗ VNS1 VNS2 MAOX MAhOX MANCPX

best avg. avg. best avg. avg. best avg. avg. best avg. avg. best avg. avg.
obj. obj. time[s] obj. obj. time[s] obj. obj. time[s] obj. obj. time[s] obj. obj. time[s]

4-72 0 0 0.0 0.61 0 0.0 1.28 0 0.0 1.21 0 0.0 1.07 0 0.0 1.10
6-76 6 6 6.0 13.01 6 6.0 12.49 6 6.0 41.11 6 6.0 67.16 6 6.0 67.87
10-93 3 3 3.0 12.98 3 3.0 12.76 3 3.0 41.51 3 3.0 69.13 3 3.0 69.33
16-81 0 0 0.0 2.69 0 0.0 4.17 0 0.0 1.43 0 0.0 1.44 0 0.0 1.46
19-71 2 2 2.0 12.91 2 2.0 12.78 2 2.0 41.03 2 2.0 62.09 2 2.0 62.59
21-90 2 2 2.0 12.85 2 2.0 12.77 2 2.0 41.30 2 2.0 61.58 2 2.0 62.05
36-92 2 2 2.0 12.87 2 2.0 12.76 2 2.0 41.18 2 2.0 66.38 2 2.0 66.30
41-66 0 0 0.0 0.10 0 0.0 0.09 0 0.0 0.73 0 0.0 0.76 0 0.0 0.80
26-82 0 0 0.0 0.66 0 0.0 1.74 0 0.0 1.10 0 0.0 1.11 0 0.0 1.14

200-01 0 0 0.0 10.17 0 0.1 11.17 0 0.1 47.25 0 0.1 39.17 0 0.1 65.43
200-02 2 2 2.0 31.88 2 2.0 30.53 2 2.0 96.22 2 2.0 167.65 2 2.0 168.97
200-03 4 3∗ 4.4 32.03 4 4.7 30.72 4 5.1 96.41 4 4.7 188.92 4 5.0 193.63
200-04 7 7 7.0 32.06 7 7.0 30.42 7 7.0 95.96 7 7.0 191.35 7 7.0 193.58
200-05 6 6 6.0 31.74 6 6.0 30.59 6 6.0 95.82 6 6.0 178.32 6 6.0 182.28
200-06 6 6 6.0 31.37 6 6.0 30.66 6 6.0 95.78 6 6.0 179.57 6 6.0 180.31
200-07 0 0 0.0 0.29 0 0.0 0.45 0 0.0 2.54 0 0.0 2.64 0 0.0 2.57
200-08 8 8 8.0 31.11 8 8.0 30.77 8 8.0 94.66 8 8.0 190.78 8 8.0 191.45
200-09 10 10 10.0 31.27 10 10.0 30.70 10 10.0 95.89 10 10.0 199.32 10 10.0 198.95
200-10 19 19 19.0 31.12 19 19.1 30.57 19 19.0 94.62 19 19.0 223.98 19 19.0 224.70
300-01 0 0 0.0 18.82 0 0.4 39.84 0 0.6 121.15 0 0.4 207.64 0 0.4 212.76
300-02 12 12 12.0 54.75 12 12.0 52.25 12 12.0 168.08 12 12.0 351.28 12 12.0 350.90
300-03 13 13 13.0 53.61 13 13.0 52.30 13 13.0 163.45 13 13.0 351.87 13 13.0 356.48
300-04 7 7 7.2 53.83 7 7.4 52.17 7 7.1 163.74 7 7.1 329.10 7 7.1 340.02
300-05 29 27∗ 29.2 54.72 29 29.9 52.02 29 29.7 162.74 29 29.7 398.45 29 29.8 404.93
300-06 2 2 2.0 55.63 2 2.2 51.92 2 3.1 164.27 2 3.2 308.74 3 3.3 312.04
300-07 0 0 0.0 3.63 0 0.0 6.80 0 0.0 15.16 0 0.0 19.55 0 0.0 20.63
300-08 8 8 8.0 53.87 8 8.0 52.02 8 8.0 163.97 8 8.0 333.13 8 8.0 336.66
300-09 7 7 7.0 54.96 7 7.3 52.09 7 7.0 162.38 7 7.0 345.58 7 7.0 345.86
300-10 21 21 21.0 55.27 21 21.1 52.11 21 21.0 159.86 21 21.0 390.76 21 21.0 400.17
400-01 1 1 1.1 83.29 1 1.3 77.44 1 1.8 242.35 1 1.7 432.35 1 1.9 435.24
400-02 15 15 15.4 83.19 15 15.6 78.04 16 16.2 238.09 15 15.8 530.02 16 16.4 535.58
400-03 9 9 9.1 83.38 9 9.2 77.23 9 9.0 243.58 9 9.0 507.20 9 9.0 517.08
400-04 19 19 19.0 82.80 19 19.0 77.64 19 19.0 243.77 19 19.0 564.87 19 19.0 566.98
400-05 0 0 0.0 0.25 0 0.0 0.20 0 0.0 5.33 0 0.0 11.73 0 0.0 4.44
400-06 0 0 0.0 6.01 0 0.0 7.76 0 0.0 18.31 0 0.0 38.60 0 0.0 38.60
400-07 4 4 4.0 82.43 4 4.0 77.80 4 4.3 244.32 4 4.0 470.11 4 4.1 474.97
400-08 4 4 4.0 81.69 4 4.0 77.84 4 4.0 243.84 4 4.0 466.17 4 4.0 468.50
400-09 5 5 6.6 81.64 6 6.9 78.09 6 6.8 242.96 6 6.9 519.20 6 6.9 524.94
400-10 0 0 0.0 6.55 0 0.0 11.98 0 0.0 7.04 0 0.0 11.68 0 0.0 10.79
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Table VI
PARAMETERS OF ALGORITHMS IN THE EXPERIMENTS

Parameter VNS MA

IBS beam width ω 5 100
Number of MA generations NMA - 100
Number of VNS moves NVNS 50,000*T 500*T
Population size |P | - 20
Mutation probability pm - 0.05
Local Search probability pls - 0.1

Among the MAs, MAhOX results in the best average ob-
jective values on all but two instances. Furthermore, it finds
the currently best known solution for each instance, except
instance 400-09. However, due to the heuristic crossover
operator which requires to maintain the information about
violated slots during the search, the solution time of MAhOX as
well as MANCPX is considerably larger than MAOX. Compared
to MANCPX, MAOX leads to better average objective values
on 5 instances and inferior values on 3 instances. Thus,
maintaining adjacency relationships between parent solutions
during crossover, as in MAOX and MAhOX, seems promising.
Given that the differences in the solution quality of all MAsare
not very large, the main contribution to the results is assumed
to stem from the VNS operator and not the recombination
operator. This is also confirmed by the results of the VNS1

algorithm, which shows the overall best performance. It re-
quires considerably less time than the MA algorithms and finds
the best known solutions for all instances and even improved
solutions with 3 and 27 violations for instances 200-03 and
300-05, respectively. Considering the average objective values,
VNS1 leads to the best results on 38 out of 40 instances.
When changing the applied neighborhood operators and their
probabilities, as in VNS2, the solution quality on the instances
of set two decreases.

VI. CONCLUSIONS

We analyze the fitness landscapes of a set of CS instances
by measuring the autocorrelation as well as fitness-distance
correlation when four different neighborhood operators and
three distances are applied. The results show a smooth land-
scape in terms of the normalized correlation length for the
reverse, swap and shift neighborhood. The adjacency distance
is suitable to describe structural relations between solutions
as it leads to a high fitness-distance correlation. Furthermore,
a big valley structure can be identified when using the ad-
jacency distance metric. The findings are included in two
metaheuristics for CS, a variable neighborhood search (VNS)
and a memetic algorithm (MA) evaluated with three different
crossover operators. In experiments, we show the superiority
of the VNS algorithm as it finds and even improves currently
best known solutions for instances of the CSPLib. Despite that
the performances of the MA algorithms are inferior compared
to VNS, MAs with a crossover operator that respects the
adjacency distance metric have a better solution quality than
MAs without.

The findings of the fitness-distance correlation analysis
would be more meaningful if the true distances according to

the applied neighborhood operators could be used. Therefore,
future research should address efficient algorithms or at least
good approximations to determine these distances. Further
insights should also be gained as to why local search in
general leads to better results than EAs for the CS problem.
We assume redundant solutions to have a negative effect on the
solution quality of EAs. Other representations for CS or the
normalization of CS solutions prior to recombination should
be analyzed and incorporated in EAs for CS.
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