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Abstract

For the reliable communication network design (RCND) problem links are
unreliable and for each link several options are available with different re-
liabilities and costs. The goal is to find a cost-minimal communication
network design that satisfies a pre-defined overall reliability constraint.
This paper presents two new EA approaches, LaBORNet and BaBOR-
Net, for the RCND problem. LaBORNet uses an encoding that represents
the network topology as well as the used link options and repairs infea-
sible solutions using an additional repair heuristic (CURE). BaBORNet
encodes only the network topology and determines the link options by
using the repair heuristic CURE as a local search method. The experi-
mental results show that the new EA approaches using repair heuristics
outperform existing EA approaches from the literature using penalties for
infeasible solutions and find better solutions for existing problems from
the literature as well as for new and larger test problems.

1 Introduction

The design of communication networks is a complex optimization problem for
telecommunication companies and has strong impact on their economic success.
For the construction of communication networks different types of communica-
tion links are available which typically differ in their costs and their reliability.
The reliability of a link measures the probability that it is available and can be
used for the transport of data. In practice, all communication links are vulner-
able to failures and the cost of a link is increasing with higher reliability (and
lower failure probability). Network designers are confronted with the problem
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to construct communication networks such that the cost of the resulting network
is minimized and the overall reliability is above some pre-defined threshold. A
common measurement for the overall reliability of a communication network
is the all-terminal reliability. It is defined as the probability that all nodes in
the network keep connected, given the probability of success/failure for each
node and link in the network.[5] The resulting network design problem is to
find a communication network that minimizes the overall network costs under
a given reliability constraint. Both, the reliable communication network design
(RCND) problem as well as the calculation of the all-terminal reliability has
been proven as NP-hard.[12, 24] In the past, heuristic optimization methods
and especially evolutionary algorithms (EA) have already been applied to the
RCND problem.[7, 4, 16, 8, 21]

This paper presents two new EA-based approaches for the RCND problem
and compares their performance to existing approaches. Both new approaches
(LaBORNet and BaBORNet) use repair strategies that ensure that the all-
terminal reliability of the resulting network design is above some pre-defined
threshold. The two new approaches differ in the handling of the all-terminal
reliability constraint. In LaBORNet an EA determines the network topology as
well as the types of communication links that are used. In BaBORNet the EA
only determines the topology and a local search strategy assigns the types of
communication links. A comparison to existing EA approaches that use penal-
ties for infeasible solutions shows for existing and new test problem instances
that both new approaches show significantly higher performance. A compari-
son between LaBORNet and BaBORNet shows that for small RCND problems
LaBORNet is faster and finds better solutions. However, with increasing prob-
lem size, combining an EA that determines the topology with a local search
strategy that determines the types of link (BaBORNet) is more efficient as the
search space of the EA is smaller.

The following section defines the RCND problem and reviews measurements
for network reliability and existing approaches for the RCND problem. Section
3 presents the two new EA approaches (LaBORNet and BaBORNet) and de-
scribes a repair heuristic (local search) that ensures the feasibility of solutions.
Experimental results and a comparison to existing approaches for the RCND
problem are presented in section 4. In section 5 the paper closes with a short
conclusion.

2 Design of Cost-minimal Communication Networks

under Reliability Constraints

2.1 The Reliable Communication Network Design Problem

The reliable communication network design (RCND) problem seeks a network
design with minimal costs under a given reliability constraint. The network
design consists of the network topology and the type of links that are used for
the edges. The topology of a network N is modeled as an undirected graph
G(V,E) with V is the set of vertices and E is the set of possible edges. n is
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the number |V | of nodes. The position of the nodes is fixed and node setup
costs are not considered. For each edge eij ∈ E between node i and j several
link options lk (k = 1, . . . , kmax) with different reliabilities r(lk(eij)) and costs
c(lk(eij)) are possible. lk(eij) is the link option k chosen for edge eij . It is
assumed that all nodes are perfect reliable, an edge can be either in the state
seij

”operational” (seij
= 1) or ”failed” (seij

= 0), link failures are independent,
and all links are bidirectional. A candidate solution for the RCND problem is
represented by a subgraph GN (V,EN ⊂ E) and the set of link options lk that
are used for the eij ∈ EN . The objective function is:

C(GN ) =
∑

eij∈EN

c(lk(eij)) → min, with: R(GN ) ≥ R0 (reliability constraint),

(1)
where C(GN ) is the total cost of a network design summarizing the costs
c(lk(eij)) of all links eij ∈ EN . R(GN ) is the overall reliability of the network
and R0 is the minimal required reliability.

2.2 Reliability Measurements for Communication Networks

We give a short overview about connectivity and other reliability measurements
for communication networks that are used in the paper. As mentioned before
we assume that nodes are perfectly reliable and only edges can fail.

2.2.1 Connectivity

The connectivity [6] of a network describes if a fully connected network is still
fully connected if one or more edges fail. A connected network component is a
subset of nodes that remains connected after the failure of one or more edges.
A network is edge 1-connected if there is at least one distinct path between each
node pair in the network. A failure of one edge already disconnects an edge 1-
connected network. Fig. 1 shows an example with 6 nodes. The network is edge
1-connected as the failure of edge e1,4 separates the network in two unconnected
components {1,2,3} and {4,5,6}. The connectivity of the example network can
be increased by adding one more edge (e.g. e2,5). Then, the network is edge
2-connected as there are two edge-disjoint paths between any node pair.

In general, in an edge n-connected network there are
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Figure 1: Example
network

at least n edge-disjoint paths for each node pair and it
remains connected if less than n edges fail. Using the
connectivity of a network as a measurement for its re-
liability allows only to consider the survivability of a
network and no failure or reliability probabilities can be
given. Therefore, probability-based reliability measure-

ments have been developed that consider the failure probabilities of the links.

2.2.2 All-Terminal Reliability

The limitations of the simple connectivity measurements are overcome by the
source-terminal reliability resp. k-terminal reliability.[6] These reliability mea-

3



surements describe the probability that two resp. k nodes of a network are
connected. The all-terminal reliability RAll [6] is equivalent to the n-terminal
reliability and is the probability that all n nodes of a communication network
are connected (n = |V |). Therefore, RAll is the probability that there is a path
between each node pair in GN .[5] The all-terminal reliability RAll is an appro-
priate measurement for the reliability of a network design based on imperfect
edges.[6]

The exact calculation of RAll is NP-hard.[24] In the literature a variety of
exact and approximative methods for calculating RAll have been proposed.[19,
11, 15, 5, 17] In this work different methods depending on the size of the network
problem are used. To check if the reliability constraint is fulfilled (R(GN ) ≥ R0)
the upper bound from Konak and Smith[15] is used. If the upper bound is larger
than R0, R(GN ) is calculated using the exact decomposition approach proposed
by Chen[5] if the problem has less than 15 nodes. Due to the large computa-
tional effort of this approach it is substituted by a Monte-Carlo simulation
technique from Fishman[11] if n ≥ 15.

2.3 Existing Solution Approaches for the RCND problem

In the literature, several approaches using heuristic optimization methods have
been proposed for the RCND and slightly modified problems. Dengiz et al.[9]
proposed a genetic algorithm (GA) for a simplified RCND problem with only
one possible link option lk (kmax = 1) using a penalty function for infeasible
solutions GN , where R(GN ) < R0. This approach was extended by Baran and
Laufer[3] who parallelized the GA to solve larger problem instances. Reichelt et
al.[21] examined both approaches and found that for several problem instances
only infeasible networks are found as best solutions. The penalty for infeasible
networks designs is too low and infeasible solutions can have higher fitness
than the optimal (feasible) solution. To overcome the problems of the penalty
approach, Reichelt et al. proposed a GA using a repair function. Dengiz and
Alabap[8] presented a simulated annealing approach for the RCND problem
which showed better performance in comparison to the previous GA approaches.

The approaches presented by Dengiz et al. are limited to only one possible
link type. This means the network designer can not select different link types
for different edges of the network but only decide if there is a link between node
i and j or not (0/1 problem). Therefore, a solution for the RCND problem is
determined by the network topology alone and no decisions about the used link
type are possible. However in reality, network designers can usually choose from
several link types with different reliabilities and costs. In general, links with
low reliability are cheap and links with high-reliability are extremely expensive.

Baran et al.[10, 2] addressed several possible link types and solved the RCND
problem as a multi-objective problem using a multi-objective GA. In this ap-
proach there are several link types available and the objectives, overall cost of
the network and reliability, are optimized in parallel. As the computational
effort of this multi-objective approach is high, Baran et al. used a Monte-Carlo
simulation for the evaluation of RAll using only 10,000 replications. Due to
the small number of replications the variance of the estimation R̂All(GN ) of the
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all-terminal reliability RAll(GN ) is high and the results for high-reliable commu-
nication networks (RAll(GN ) ≈ 0.99) are inaccurate. The RCND problem with
a reliability constraint (RAll(GN ) ≥ R0) and different link options has also been
investigated by Darren et al.[7] Similarly to Dengiz et al. the authors proposed
a GA using a penalty function. The penalty has to be adjusted for each network
problem using a penalty rate parameter. Darren et al. recommend that the
penalty should be set according to the problem complexity but give no advice
on how the problem complexity can be measured or how the parameter can
be chosen for a specific problem. Therefore, using this method requires either
additional knowledge about the problem complexity or additional experiments
for finding appropriate penalty values.

3 Evolutionary Algorithms using Repair Concepts

for the Design of Reliable Communication Net-

works

When using heuristic optimization methods like evolutionary algorithms for
the RCND problem there are different strategies[18] for handling infeasible net-
works that violate the reliability constraint (compare equation 1). Infeasible
solutions can be either removed from the population, repaired such that they
become feasible, or the fitness of infeasible solutions can be reduced by addi-
tional penalties. To just remove infeasible solutions from the population is not
appropriate as most randomly created networks are infeasible and the optimal
solution is at the boundary between feasible and infeasible solutions. Therefore,
previous approaches mostly used penalties for infeasible solutions. However, the
analysis of existing penalty approaches for the RCND problem[21] as well as
penalty approaches for other constraint optimization problems[13] shows that
the proper design of penalties is difficult and EAs are often misled. Therefore,
we propose to use repair approaches for the RCND problem. Consequently,
repair mechanisms are developed that are applied to infeasible solutions and
output a valid network.

3.1 Using Repair Heuristics for Evolutionary Algorithms

The purpose of a repair heuristic is to modify an infeasible solution for the
RCND such that it becomes valid and fulfills the reliability constraint. There
are two different possibilities for the repair process: either the repaired and valid
solution completely replaces the infeasible solution[18] or the infeasible solution
remains in the population and only the fitness of the repaired and valid solution
is assigned to the infeasible solution,[20] which remains in the population. These
two possibilities on how to perform the repair process follow the notion of
Lamarckian evolution versus the Baldwin effect. In Lamarckian evolution[23]
each individual bequeathes the learned improvements (repairs) to its offspring.
That means that a repair strategy based on Lamarckian evolution repairs an
infeasible solution and replaces it by the repaired solution. In contrast, the
Baldwin effect[1] is based on the assumption that only the individual’s fitness
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Figure 2: LaBORNet encoding of a network

is changed by the learned improvements (repair) but the changes itself are
not inherited to the offspring. Therefore, the underlying genotype remains
untouched (the infeasible solution remains in the population) and only the
fitness value of the valid solution is assigned to the infeasible individual.

In the following two sections, we present two EA approaches (LaBORNet
and BaBORNet) for the RCND problem which use a repair mechanism (com-
pare section 3.4) and are inspired by the Lamarckian evolution resp. the Bald-
win effect:

t:=0
create initial population P(t)
evaluate P(t), repair individuals with RAll < R0

repeat until stop criteria
t := t+1
P*(t) := select individuals from P(t)
P’(t) := recombine P*(t)
P”(t) := mutate P’(t)
evaluate P”(t), repair individuals with RAll < R0

P(t+1) := choose best individuals from P(t) and P”(t)

During the evaluation step each solution is checked if it fulfills the reliability
constraint RAll(GN ) ≥ R0. If a solution violates the constraint it is repaired
(compare section 3.4) such that the reliability constrained is fulfilled.

3.2 LaBORNet - A Lamarckian Based Optimizer for Reliable

Network Design Problems

LaBORNet is inspired by the Lamarckian evolution and describes an EA where
all infeasible solutions are replaced by repaired, valid, solutions. In LaBORNet
each solution is encoded as a vector g with length n(n− 1)/2, where n = |V | is
the number of nodes. Each element of g corresponds to a possible edge eij and
indicates the number k of the link option lk(eij) (1 ≤ k ≤ kmax) that is chosen
for the edge eij. gi = 0 indicates that there exists no link. Fig. 2 illustrates
the encoding of a network. Dashed lines indicate edges that do not exist in the
network (gi = 0).

Randomly created solutions as well as solutions created by standard crossover
(e.g. uniform or one-point crossover) or mutation operators (e.g. exchange or
modification of alleles) can result in infeasible solutions. Such solutions are
repaired by the approach presented in section 3.4 and replace the infeasible
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Figure 3: BaBORNet encoding of a network

solution. LaBORNet is a combination of EA and local search where each EA
individual encodes the topology of the network as well as the link options that
are used for the links. The resulting search space is large, (kmax + 1)n(n−1)/2.

3.3 BaBORNet - A Baldwin Based Optimizer for Reliable Net-

work Design Problems

BaBORNet is inspired by the Baldwin effect and combines an EA with a local
search (repair heuristic) that creates valid solutions. Individuals only encode the
topology of the network and contain no information about the link types that
are used for the edges. Therefore, the EA can only determine the topology of
the network and the used link types are chosen by the repair strategy described
in the next section. Fig. 3 shows the encoding of the same network as figure 2.
The topology of a solution is encoded as a binary string g of length n(n− 1)/2,
where each allele corresponds to an edge eij ∈ E.

For the fitness evaluation of an individual each link type is set to the cheapest
possible link option. If the resulting network violates the reliability constraint
(RAll < R0) the repair procedure from section 3.4 is applied. The repair heuris-
tics changes the link options (chooses more reliable but more expensive link
types) and adds additional edges to the network to obtain a valid solution. The
repair heuristic outputs a network that satisfies the reliability constraint. Fi-
nally, the fitness of the repaired and valid solution is assigned to the individual.
If the repair heuristics has added additional links to the network the bitstring
representing the topology of the network also is changed and the additional
links are added.

In comparison to the LaBORNet approach presented in the previous section
the search space of the EA in BaBORNet is smaller (2n(n−1)/2). For example,
the search space of a small problem with 10 nodes and three link types is 245 ≈
3.5∗1013 for BaBORNet but 445 ≈ 1.2∗1027 for LaBORNet. Due to the smaller
size of the search space the EA is expected to find better network topologies.
The BaBORNet approach can be seen as a combination of an EA which is
responsible for finding good topologies and a local search (repair heuristic)
which is responsible for finding proper link types. Despite the smaller EA
search space, the computational effort of BaBORNet is higher as almost all
solutions are initially infeasible and have to be repaired. As the repair process
is time-consuming and has to be invoked for all fitness evaluations, the overall
running time of BaBORNet is expected to exceed the overall running time of
LaBORNet.
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3.4 CURE - A Deterministic Cut-Based Repair Heuristic

The purpose of the cut-based repair heuristic (CURE) is to repair infeasi-
ble solutions GN of the RCND problem that violate the reliability constraint
(RAll(GN ) < R0). CURE performs iterative repair steps and increases in each
step the overall reliability of the network until RAll(GN ) ≥ R0. To increase the
overall reliability RAll, CURE iteratively increases the reliability of the edges eij

by choosing a link option lk with a higher reliability r(lk(eij)). If the reliability
of all edges eij ∈ GN is maximal and still RAll(GN ) < R0, CURE iteratively
adds additional edges to GN using the procedure proposed by Reichelt et al.[21]

The concept of CURE is based on minimal cuts in graphs. For a graph
GN (V,EN ) a cut C ⊂ V is defined as a non-empty subset of the nodes V .
Each cut C determines a set of edges EC ⊂ E, with ∀eij ∈ EC : i ∈ C and
j /∈ C. Removing all edges EC from GN would split the graph in two subgraphs
with the vertex sets C and V \ C. Therefore, the failure of all edges eij ∈ EC

would disconnect the network. The weight of a cut C is the sum of weights of
the edges eij ∈ EC . A minimal cut (MinCut) is the cut with minimal weight.
In CURE, minimal cuts are used to find a set of edges, where an increase in
reliability (choosing more reliable link types) can be achieved with minimal
cost. Therefore, the weight of an edge eij ∈ GN is the cost c(lk+1(eij)), where k
is the currently used link option and k + 1 is the next more reliable link option
(the reliabilities of the links increase monotonously with larger k). As a result,
the edges contained in the minimal cut represent a set of edges that increase
the all-terminal reliability of the network with minimal costs. CURE process
the following steps:

Input: GN (V,EN ), G(V,E), R0

Queue Q = ∅
Q.append(GN)
while (!Q.empty) & (RAll(GN ) < R0)) do begin

Gwork = Q.first()

assign weights (costs) to eij ∈ Gwork: c(lk(eij)) =

{

c(lk+1(eij)) if k < kmax

c(lk(eij)) if k = kmax

C = MinCut(Gwork) (using the weights c(lk(eij))

increase reliability ∀eij ∈ EC : lk(eij) =

{

lk+1(eij) if k < kmax

lk(eij) if k = kmax

calculate RAll(GN )
GN1

= Gwork \ {C}, GN2
= C

if number of nodes in (GN1
) > 1

Q.append(GN1
)

if number of nodes in (GN2
) > 1

Q.append(GN2
)

Q.remove(Gwork)
if (Q.empty) & (∃eij ∈ EN : k < kmax)

Q.append(GN )
end
if (RAll(GN ) < R0) begin

add eij ∈ E \ EN to GN

8



k=11

2

3

4

k=1 k=2

k=3

(a) GN with
link options k

241

2

3

4

20

56

96

(b) GN

with weights
c(lk(eij))

1

2

3

4

(c) subgraph
GN1

l1(eij) l2(eij) l3(eij)
r c r c r c
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e3,4 0.8 24 0.9 48 0.95 96
e1,3 0.8 12 0.9 24 0.95 48

(d) reliability r(lk(eij)) and
cost c(lk(eij)) for different link
options lk

Figure 4: Functionality of the CURE repair heuristic

∀eij ∈ GN : lk(eij) = l1(eij)
call CURE

end

In a first step, CURE assigns weights to all edges eij ∈ GN . The weights of
the edges are the cost c(lk+1(eij)) of the next more reliable link option (k is the
number of the current option). If the reliability of an edge is already maximal
(k = kmax), the cost of the currently chosen link option is used. Then, CURE
calculates[22] the minimal cut C using the weights c(lk(eij)). As a result, we get
a set of nodes C and a set of edges EC . In a next step, for all edges eij ∈ EC

the next more reliable link options are chosen. If the use of more reliable
link options allows GN to fulfill the reliability constraint, CURE terminates.
Otherwise, CURE considers the two subgraphs GN1

and GN2
, that are created

by the removal of all cut edges EC from GN . Both subgraphs are added to the
queue if they have more than one node. If the queue is empty, RAll(GN ) < R0,
and there are still some eij whose reliability can be increased, GN is added
again to the queue. If for all edges in GN the link options with the maximal
reliability are chosen and still RAll(GN ) < R0 an additional heuristic[21] adds
more edges to GN and CURE is called again.

Fig. 4 illustrates the functionality of CURE. There are three different link
options (kmax = 3). Fig. 4(d) lists the reliabilities r(lk(eij)) and costs c(lk(eij))
of the different options. The topology and the used link options k for an example
network GN are shown in Fig. 4(a). Using the numbers from Fig. 4(d) CURE
assigns weights to all eij (compare Fig. 4(b)). Based on the weights, the
minimum cut finds the node set C such that the sum of the weights of the links
eij ∈ EC is minimal. When removing the links eij ∈ EC from GN the network
becomes disconnected. The minimal cut is C = {1} with EC = {e1,2, e1,3} and
a weight of 44 (indicated by the dashed lines in Fig. 4(c)). In the next step
the reliability of e1,2 and e1,3 is increased to r(e1,2) = 0.9 and r(e1,3) = 0.9 and
RAll(GN ) is calculated. If RAll(GN ) < R0, CURE continues with the graph
GN1

. If the queue is empty and still RAll(GN ) < R0, GN is appended to the
queue. This procedure is repeated until all edges eij ∈ EN have maximum
reliability. Then, additional edges are added to GN , all link options are set to
the most unreliable value (k = 1), and CURE is called again.
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4 Experiments and Results

4.1 Test Problems

The performance of the EAs proposed in section 3 is evaluated for six test
instances representing artificial and real world design problems:
Darren10 (10 nodes): This test problem was created by Darren et al.[7] The
nodes are randomly placed on a 100x100 grid and there are three different
link options with reliabilities r(l1) = 0.7, r(l2) = 0.8, and r(l3) = 0.9 and
corresponding costs c(l1) = 8, c(l2) = 10, and c(l3) = 14 for each edge. The cost
of a link with reliability r(lk) is calculated as the Euclidean distance between
two nodes multiplied by c(lk). The best solution for R0 = 0.95 published by
Darren et al.[7] is 5,661.
Turkey19 (19 nodes): This problem represents a simplified version of a real-
world design problem of the Turkish government.[7] The goal is to find a network
with R0 = 0.99 that interconnects 19 academic centers in 9 cities in Turkey.
The cost of the best solution for this problem found by Darren et al.[7] was
7,694,708. This result was improved by Baran et al.[2] to 1,755,474 using a
multi-objective GA.
ger15, ger20, ger25, ger30 (15, 20, 25, 30 nodes): We introduce four new test
instances representing the 15, 20, 25 and 30 largest cities in Germany. There are
three link options (kmax = 3) with different reliabilities (r(l1) = 0.7, r(l2) = 0.8,
r(l3) = 0.9) and corresponding costs (c(l1) = 8, c(l2) = 10, c(l3) = 14). As
for Darren10, the cost of a link is the Euclidean distance between the nodes
multiplied with c(lk). We present results for R0 = 0.95.

4.2 Experimental Design

We performed experiments for the test problems described in the previous sec-
tion and compared the performance of LaBORNet and BaBORNet with the
penalty-based EA from Darren et al.[7] For the experiments a steady state EA
(with 50% overlapping populations), uniform crossover and allele-flipping mu-
tation was used. The EA was stopped after 200 generations or if there was
no fitness improvement over the last 20 generations. The crossover probability
pcross was 0.9 and the mutation probability pmut was set to 0.01. The indi-
viduals in the initial population were randomly created using a propability of
P = 0.4 for creating a link between two nodes. For LaBORNet and for the
penalty-based EA all initial link option were choosen uniformly with probabil-
ity P = 1/kmax. For each problem, 10 independent runs have been performed.
For Darren10, RAll was calculated using an exact decomposition method[5]; as
the calculation of RAll is NP-complete, for all other problems the exact method
was replaced by a Monte-Carlo simulation.[11, 17] The Monte-Carlo simulation
starts with 30,000 samples which are increased by 1,000 each fifth generation
to get more accurate predictions in later stages of the search.

Table 1 shows the experimental results for the different test problems. The
tables show the EA type, the used population size pop, the cost C(Gbest) of
the best solution found at the end of a run (mean and standard deviation over
10 runs and best found solution), the average running time tconv in seconds,
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and the number of fitness evaluations (average and standard deviation). For
LaBORNet and BaBORNet we present results for pop = 100 and pop = 200.
As a benchmark, we present results for the penalty EA for pop = 200. The cost
of the best ever found solution is marked bold.

4.3 Results

A direct comparison to the best found results from the literature shows that by
using BaBORNet, resp. LaBORNet the cost of the best found solution can be
reduced from 5,661[7] to 4,386 for the Darren10 problem and from 1,755,474[2]
to 1,624,960 for the Turkey19 problem. This is a significant improvement. In-
terestingly, the results obtained for our implementation of the penalty approach
from Darren et al.[7] are better than the results reported in the original work.
This can be explained by two modifications. Firstly, we create in the initial
population a link between two nodes with probability 0.4 instead of 0.75. This
modified initialization strategy makes use of the fact that high-quality solu-
tions use only a low number of links. Secondly, the use of a steady state EA
with overlapping populations instead of a standard generational EA results in
higher selection pressure what leads to higher EA performance than reported
by Darren et al.

The results show that the use of repair approaches like BaBORNet or
LaBORNet for the RCND problem allows to find better solutions than the
use of the penalty approach from Darren et al.[7] or the multi-objective ap-
proach from Baran et al.[2] Furthermore, in all problem instances both repair
approaches significantly outperform the penalty approach. The increase in so-
lution quality for pop = 200 ranges from about 10% for small problems with 10
nodes (Darren10) to 40% for problems with 30 nodes (ger30).

A direct comparison between LaBORNet and BaBORNet reveals that BaBOR-
Net, that means combining an EA for finding good topologies with a local
search strategy for determining appropriate link types, outperforms LaBOR-
Net with increasing problem size n. Only for the small Darren10 problem
instance, LaBORNet outperforms BaBORNet. This can be explained by the
increase of the search space with larger n. When using LaBORNet, the result-
ing search space is much larger as when using BaBORNet and the EA has to
find both, a high-quality network topology and appropriate link options. When
using BaBORNet, the EA only has to find a good topology and proper link
options are determined by the local search strategy CURE.

Comparing the performance of LaBORNet and BaBORNet for different
population sizes shows the expected behavior. For small problems, doubling
the population size from pop = 100 to pop = 200 only slightly increases the
solution quality as both population sizes allow to efficiently solve the problem.
Contrastly, large problems like ger30 are more difficult and increasing the pop-
ulation size allows to increase the success probability of EAs (compare Harik et
al.[14]) resulting in better results when using a higher population size.

Figure 5 compares the convergence behavior of the different EAs exemplary
for the Darren10 and ger30 problem. It shows the average best fitness over the
number of generations for LaBORNet, BaBORNet, and the penalty EA. The
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Table 1: Experimental results

problem EA type pop
cost C(Gbest) at end of run tconv evaluations
mean (std.dev.) best (in sec) mean (std.dev.)

LaBORNet 4,501 (70) 4,433 710 2,640 (512)
BaBORNet

100
4,651 (40) 4,597 1,091 1,155 (394)

Darren10 LaBORNet 4,457 (17) 4,386 1,897 4,450 (1,185)
BaBORNet

200
4,620 (35) 4,597 1,508 2,290 (525)

penalty EA 200 5,239 (210) 4,948 773 6,280 (1,248)

LaBORNet 2,348,899 (398,180) 1,886,350 6,300 8,250 (1,305)
BaBORNet

100
1,670,062 (34,700) 1,620,210 23,210 8,315 (1,573)

Turkey19 LaBORNet 2,160,075 (170,580) 1,802,870 25,200 15,460 (3,095)
BaBORNet

200
1,650,683 (18,250) 1,624,960 50,090 13,980 (3,473)

penalty EA 200 2,898,091 (263,880) 2,499,080 8,100 18,980 (1,603)

LaBORNet 49,284 (2,130) 46,326 3,390 5,480 (2,161)
BaBORNet

100
45,832 (460) 45,004 23,408 7,245 (2,036)

ger15 LaBORNet 47,419 (1,820) 44,648 10,800 11,130 (3,639)
BaBORNet

200
45,101 (700) 43,996 45,400 12,510 (4,627)

penalty EA 200 55,402 (1,900) 52,644 6,300 13,240 (2,045)

LaBORNet 58,732 (4,650) 51,064 10,950 8,985 (1,487)
BaBORNet

100
52,553 (818) 51,064 23,580 7,945 (1,722)

ger20 LaBORNet 57,980 (3,060) 53,998 26,100 13,370 (2,857)
BaBORNet

200
51,277 (660) 50,214 79,620 17,110 (2,862)

penalty EA 200 74,910 (10,000) 64,822 8,700 18,270 (2,747)

LaBORNet 91,064 (5,350) 84,620 14,520 10,000 (147)
BaBORNet

100
59,077 (1,800) 56,046 24,780 8,580 (1,271)

ger25 LaBORNet 76,750 (4,770) 70,396 45,370 19,530 (1,017)
BaBORNet

200
56,718 (700) 55,300 90,345 17,480 (2,616)

penalty EA 200 155,315 (50,700) 122,980 24,240 19,930 (395)

LaBORNet 171,649 (14,500) 158,664 21,750 9,030 (1,412)
BaBORNet

100
91,177 (3,600) 84,548 24,960 9,585 (492)

ger30 LaBORNet 147,674 (7,000) 138,646 44,040 18,830 (2,453)
BaBORNet

200
83,968 (2,100) 79,662 102,300 19,540 (563)

penalty EA 200 268,033 (25,000) 246,106 38,340 19,730 (762)
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Figure 5: C(Gbest) over the number of generations for Darren10 and ger30. We
compare LaBORNet, BaBORNet, and a penalty EA (pop = 200).

plots are averaged over 10 runs and a population size pop = 200 is used. The
figures reveal that due to the repair heuristic (local search) LaBORNet as well
as BaBORNet find better solutions than the penalty EA in the initial popula-
tion. Consequently, both repair approaches outperform the penalty approach.
Furthermore, as already discussed, for small problems like Darren10, LaBOR-
Net outperforms BaBORNet, whereas for the larger ger30 problem BaBORNet
finds better solutions than LaBORNet.

The remaining aspects are the running time tconv and the number of fit-
ness evaluations. The most time-consuming elements of the EA runs are the
calculations of RAll. The number of calculations of RAll depends on the repair
strategy CURE and on the solution that has to be repaired. The running time
per fitness evaluation is expected to be higher for BaBORNet in comparison to
LaBORNet as BaBORNet stores no information about link options. When us-
ing BaBORNet the repair heuristic has to determine all link types by iteratively
increasing the reliability of links and it is necessary to calculate RAll in each
iteration. When using LaBORNet, the link types are encoded in an individual
and there are less repair steps (and less calculations of RAll) necessary to get a
feasible solution.

Comparing the number of evaluations in table 1 shows about similar values
for all three EA approaches. With increasing problem size n the number of eval-
uations increases until about 10,000 for pop = 100 resp. 20,000 for pop = 200
(the runs are stopped after 200 generations). Comparing tconv to the number of
evaluations reveals that the penalty EA is fastest whereas the repair approaches
need much longer. The reason is that RAll is calculated only once for each so-
lution if the penalty EA is used. When using repair approaches, an infeasible
solutions must be repaired what makes it necessary to calculate RAll several
times to repair one infeasible solution. The highest number of calculations of
RAll are necessary for BaBORNet (resulting in a high running time tconv) as the
repair process of a solution always starts with the most unreliable link options
and needs a large number of steps.
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Although the computational effort of the repair approaches is higher when
using the same population size, they outperform the penalty approach when
using the same computational time. The numbers show that a penalty EA with
pop = 200 needs about the same tconv as repair approaches with pop = 100.
Comparing the quality of the solutions that can be found using about the
same running time tconv reveals that the repair approaches, LaBORNet and
BaBORNet, find much better solutions in comparison to the penalty EA when
using about the same tconv.

5 Summary and Conclusions

This paper presented two new approaches for the reliable communication net-
work design (RCND) problem. The RCND problem assumes that links are
unreliable and that for each link several options are available with different
reliabilities and costs. The goal is to find a cost-minimal network design that
satisfies a given overall reliability constraint. The paper presented in section 2
existing measurements for the overall reliability of a network and reviewed ex-
isting approaches for the RCND problem. In section 3, two new EA approaches,
LaBORNet and BaBORNet, are presented. LaBORNet uses an encoding that
encodes the network topology as well as the used link options and repairs infea-
sible solutions using the repair heuristic CURE. BaBORNet encodes only the
network topology and determines the link options by using the repair heuristic
CURE as a local search method. An investigation into the performance of the
two repair approaches together with a comparison to a penalty EA approach
from the literature is presented in section 4.

This presented results show that RCND problems can be solved more effi-
ciently using the proposed EA approaches, LaBORNet and BaBORNet, than
using penalty approaches. By using the new EA approaches, significantly bet-
ter solutions for existing test problems from the literature can be found. The
two new EA approaches using repair mechanisms outperform existing penalty
approaches reliably and generate solutions of higher quality for all considered
test problems. A direct comparison between the two new approaches reveals
that BaBORNet, that means combining an EA who determines the network
topology with a local search method that determines the link options, results
in better solutions but needs more computational effort than LaBORNet, where
the EA has to determine both the topology and the link options.
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