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ABSTRACT
The optimal communication spanning tree (OCST) prob-
lem is a well known NP-hard combinatorial optimization
problem which seeks a spanning tree that satisfies all given
communication requirements for minimal total costs. It
has been shown that optimal solutions of OCST problems
are biased towards the much simpler minimum spanning
tree (MST) problem. Therefore, problem-specific represen-
tations for EAs like heuristic variants of edge-sets that are
biased towards MSTs show high performance.

In this paper, additional properties of optimal solutions
for Euclidean variants of OCST problems are studied. Ex-
perimental results show that not only edges in optimal trees
are biased towards low-distance weights but also edges which
are directed towards the graph’s center are overrepresented
in optimal solutions. Therefore, efficient heuristic search al-
gorithms for OCST should be biased towards edges with low
distance weight and edges that point towards the center of
the graph. Consequently, we extend the recombination op-
erator of edge-sets such that the orientation of the edges is
considered for constructing offspring solutions. Experimen-
tal results show a higher search performance in comparison
to EAs using existing crossover strategies of edge-sets. As a
result, we suggest to consider not only the distance weights
but also the orientation of edges in heuristic solution ap-
proaches for the OCST problem.

1. INTRODUCTION
The optimal communication spanning tree (OCST) prob-

lem [3] is a common NP-hard combinatorial optimization
problem which seeks a spanning tree that satisfies all com-
munication requirements and leads to minimal total costs.
For decades, researches studied various solution approaches
for the OCST problem [10, 14]. The current state-of-the-art
approaches are based on heuristics and metaheuristics, in
particular evolutionary algorithms (EA), to solve the prob-
lem. Especially EAs using the edge-set encoding [9] show
good performance for many real-world problems where the
optimal solutions are similar to MSTs. The edge-set en-
coding is a direct representation for trees which directly
represents trees as sets of edges and uses encoding-specific
search operators to generate candidate solutions. There ex-
ist heuristic versions which rely on distance weights as well
as non-heuristic versions.

In this paper, we study additional properties of high qual-
ity solutions for the Euclidean variants of the OCST prob-
lem. The analysis shows that the orientation of the edges
matters and high quality solutions contain edges that point

in the direction towards the center of the tree with higher
probability. Consequently in a second step, we make use of
this observation and extend the crossover operator of the
edge-set encoding such that not only the distance weights
but also the orientation of the edges is used for constructing
an offspring from parental edges. Experimental results for a
number of test problems reveal that this allows to improve
search performance of EAs.

The following section defines the OCST problem, presents
properties of optimal solutions, lists various OCST test in-
stances, and describes how to determine optimal solutions
for small problem instances of the OCST problem. Addi-
tionally, it provides experimental results on the orientation
of edges in optimal solutions. In Sect. 3, the edge-set en-
coding is described and we extend the heuristic crossover
operator of edge-sets in such a way that it relies on the
weights and orientations of the edges. Sect. 3 studies the
performance of EAs using the extended heuristic crossover
operator for different test instances and Sect. 4 presents con-
cluding remarks.

2. THE OCST PROBLEM

2.1 Problem Definition
The OCST problem is a common NP-hard combinato-

rial optimization problem and was first introduced by Hu
[3]. The goal is to seek a tree which connects all given
nodes and satisfies their communication requirements for a
minimum total costs. It can be formulated as follows: Let
G = (V, E) be a weighted, undirected graph with n = |V |
nodes and m = |E| edges. The communication or transport
requirements between the n different nodes are given a pri-
ori in the n×n demand matrix R = (rij). Analogically, the
n × n distance weight matrix W = (wij) specifies the dis-
tance weights. The weight w(T ) of a tree T = (V, F ) with
(F ⊆ E) and |F | = n − 1 is calculated as follows:

w(T ) =
X

i,j∈V

wijbij , (1)

where bij denotes the traffic flowing directly or indirectly
over the edge between nodes vi and vj . The traffic is cal-
culated according to the structure of T and the demand
matrix R. T is the optimal communication spanning tree, if
w(T ) ≤ w(T ′) for all other spanning trees w(T ′).

To measure the difference between two spanning trees Ti

and Tj , the distance dij ∈ {0, 1, . . . , n−1} can be calculated



as

dij =
1

2

X

u,v∈V,u<v

|ei
uv − ej

uv|. (2)

ei
uv = 1 if edge euv is included in Ti and ei

uv = 0 if not.
Like many other constrained graph problems, the OCST

problem is NP-hard [2]. Furthermore, since the problem
is MAX SNP-hard [6], no polynomial-time approximation
scheme exists, unless NP = P. Only for a few restricted
problem instances algorithms exist, which return optimal so-
lutions [17]. In addition, various approximation algorithms
for the OCST problem have been developed [7, 18, 19]. How-
ever, due to the MAX SNP-hardness of the problem the
solution quality of such approximation algorithms is very
limited. To overcome the limitations of exact and approx-
imation algorithms, many heuristics, especially EAs have
been developed [5, 12, 9, 15, 1]. For an overview of EAs for
the OCST problem, we refer to Rothlauf [10].

Rothlauf et al. [13] analyzed the properties of the OCST
problem and showed that optimal solutions are biased to-
wards the minimum spanning tree (MST). The distances be-
tween optimal solutions and MSTs are significantly smaller
than the distances between optimal solutions and randomly
generated solutions. Thus, if an optimization method for
the OCST problem is biased towards MST-like solutions,
the performance can be increased. This fact is used by the
heuristic variants of edge-sets [9, 8], which favor edges with
a low distance weight [16].

2.2 Test Instances
Several authors provided test instances for the OCST prob-

lem. In the appendix of [10] a comprehensive collection can
be found. In addition, following Raidl [9] and Rothlauf [10],
we use randomly created OCST test instances. For our test
instances, the real-valued demands rij are randomly created
and are uniformly distributed in [0, 10]. The real-valued dis-
tance weights wij are calculated as the Euclidean distances
between the nodes i and j which are randomly placed on a
10 × 10 2-dimensional grid.

2.3 Finding Optimal Solutions
For finding optimal, or at least near-optimal solutions

of OCST problems, we used a mathematical programming
solver for small problem instances with n ≤ 12 and a GA for
larger problem instances. The OCST problems are modeled
as an integer linear program [11], and CPLEX 10.2 is able to
solve all problem instances with n ≤ 12 in reasonable time.

The situation is different for larger problem instances (n >
12) which can not solved by CPLEX in reasonable time.
Therefore, we used an iterative GA for such problems. Al-
though GAs are heuristic search methods that cannot guar-
antee finding the optimal solution, we choose its design in
such a way that we can assume that the found solution is
optimal or near-optimal. We start the iterative GA by ap-
plying a standard GA niter times to an OCST problem us-
ing a population size of N0. T best

0 denotes the best solution
that is found during the niter runs. In a next round, we
apply again a GA niter times with N1 = 2N0 which finds
the best solution T best

1 . We continue the iterations and dou-
ble the population size Ni = 2Ni−1 until T best

i = T best
i−1 and

n(T best
i )/niter > 0.5, this means T best

i is found in more than
50% of the runs in round i. n(T best

i ) denotes the number of
runs that find the best solution T best

i in round i.

i

j
C

γ1

γ2

Figure 1: orientation of an edge eij

For the experiments, we use a standard, generational GA
with crossover and mutation. Problems are encoded using
NetKeys, since GA performance is approximately indepen-
dent of the structure of the optimal solution. The GA uses
uniform crossover and tournament selection without replace-
ment. The size of the tournament is three. The crossover
probability is set to pcross = 0.7 and the mutation proba-
bility (assigning a random value [0, 1] to one allele) is set to
pmut = 1/l, where l = n(n − 1)2.

2.4 Orientation of Edges in Optimal Solutions
To identify properties of high-quality solutions for OCST

problems, we analyze the orientation of the edges in optimal
solutions. We assume that edges which are directed towards
the center of a graph are overrepresented in optimal solu-
tions. Such edges lead to shorter paths between pairs of
edges and hence to lower costs of a solution.

Figure 1 illustrates the calculation of the orientation of an
edge. The orientation of an edge eij is the angle γ ∈ [0, 90]
between eij and the line connecting the midway of eij and
the center C of the tree. C is calculated as the average
x-coordinates and y-coordinates of all nodes in the graph.
Since γ ≤ 90, the lower angle is chosen (γ = min(γ1, γ2)).
For edges directly pointing to the center, γ = 0.

To study the orientation of edges in optimal solutions, we
compare the orientation of the edges in optimal solutions
to those in randomly created trees and those in MSTs. We
present results for trees with n = 15 and n = 20 nodes. For
each problem size, we create 100 random Euclidean OCST
test instances as described in Sect. 2.2. For each OCST in-
stance, we generate 10,000 random trees, calculate the MST,
and determine an optimal (or near-optimal) solution accord-
ing to Sect. 2.3.

Figure 2 presents results for n = 15 (Fig. 2(a)) and n = 20
(Fig. 2(b)). For the experiments, we considered all edges for
different types of trees and plot the average distribution of
γ for optimal solutions (“optimal”), random solutions (“ran-
dom”), and MSTs. If the distribution is about uniform, ori-
entation does not matter and all angles γ occur with the
same probability in a tree. Studying the distribution for
random trees shows that edges with larger γ are slightly
preferred and occur more often in random solutions. There-
fore, random solutions have a bias towards edges with high
γ. For MSTs, orientation of the angles is of less importance
and the distribution of γ is about uniform. In contrast, for
optimal solutions, we have a non-uniform distribution of γ
and edges with low γ occur more often. For example, for
n = 20, on average about 20% of all edges of optimal so-
lutions have an angle γ ≤ 10 whereas only about 4% of all
edges have an angle γ > 80. Therefore, the results of our
experiments support the assumption that edges with a low
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Figure 2: Distribution of γ for optimal solutions,
random solutions, and MSTs for 100 randomly gen-
erated OCST instances with n = 15 and n = 20

γ are overrepresented in optimal solutions.
We see that optimal solutions have a bias towards edges

with low γ. Therefore, we study whether heuristic optimiza-
tion methods can make use of this observation by favoring
edges with low distance weight and low γ. Consequently, in
the following paragraphs, we study how to extend existing
EA approaches such that they do not only favor edges with
low distance weights but also edges that point towards the
center of a tree.

3. PROBLEM-SPECIFIC EAS FOR OCST
PROBLEMS

In this section, we extend the heuristic crossover operator
of the edge-set encoding such that it does not only has a bias
towards low-weighted edges but also towards low angles γ.
Furthermore, we study and compare the performance of the
resulting crossover operator.

We start by presenting the edge-set encoding and possible
edge selecting strategies for crossover. In Sect. 3.2, we ex-
tend the crossover operator of edge-sets such that edges with
low distance weight and angle γ are preferred. In Sect. 3.3,
we perform experiments to analyze the trade-off between dis-
tance weight and orientation. Finally, Sect. 3.4 studies the
performance of EAs using the extended version of edge-sets
for different test instances.

3.1 Edge-sets
The edge-set (ES) encoding presented by Raidl et al. [9,

8] is a direct representation which directly represents trees
as sets of edges. In direct representations, encoding-specific
search operators are used to generate new solutions. ES op-
erators are either heuristic considering the distance weights
of edges for the constructions of the offspring or non-heuristic.
We focus on the heuristic variants of the crossover operator
which result in higher performance in comparison to non-
heuristic variants [9, 16]. Initialization and mutation of ES
is implemented as described in [9]. The following paragraphs
present the functionality of the crossover operator and dis-
cusses different edge-selection strategies.

Crossover creates an offspring from two parental trees
T1 = (G, E1) and T2 = (G, E2) by iteratively selecting edges
from the set F = (E1 ∪E2) of parental edges eligible for in-
clusion. Therefore, the offspring tree exists solely of parental

edges. Different variants are distinguished according to the
order in which parental edges are selected and inserted into
the offspring. Julstrom and Raidl [4] presented four dif-
ferent edge-selection strategies which can be applied within
crossover operators:

Random: In this crossover variant, which is denoted as
KruskalRST [9], the edges of the offspring are ran-
domly selected from F . [9] also presented an extended
variant named KruskalRST* which includes all edges
(E1 ∩ E2) in the offspring and, in a second step, ran-
domly chooses the remaining edges from F \(E1∩E2).
Both edge-selection strategy are about unbiased [9].

Greedy: This strategy selects in each step the edge with the
lowest weight F until the offspring tree is a complete
spanning tree. If edges have the same weight, one is
selected at random. This strategy results into a bias
towards low-weighted edges.

Inverse-weight-proportional: Edges are selected from F
according to probabilities inversely proportional to their
weight. Therefore, the strategy has a bias towards
edges with low weight.

2-tournament: The edges are selected from F via a tour-
nament selection (tournament size equals 2) with re-
placement. The weights of two edges are compared
and the edge with the lower weight is included in the
offspring. This heuristic crossover operator is used in
[9] and shows a bias towards low-weighted edges and
MSTs [16].

To strengthen the inheritance of common features from the
parents, all strategies can be designed as a *-strategy. Then,
all edges (E1 ∩ E2) are included in the offspring and the
remaining edges are selected from F \ (E1 ∩ E2) using an
edge-selection strategy.

3.2 Extended Crossover Operators for Edge-
Sets

Based on the insights gained in Sect. 2.4, we extend edge-
sets such that the knowledge about the orientation of edges
in optimal solutions is considered. We do this by modify-
ing the edge-selection strategies of the crossover operators of
ES. We develop two different variants based on the greedy
crossover strategy and on the 2-tournament crossover edge-
selection strategy (see Sect. 3.1). To ensure high heritability,
both variants are designed as *-strategy where all edges com-
mon in both parents are directly transferred to an offspring.
The missing edges are chosen from the remaining parental
edges E′ = (E1∪E2)\(E1∩E2) either using greedy crossover
selection or 2-tournament crossover selection.

In contrast to existing approaches, the edges to be in-
serted into the offspring are not selected according to their
distance weight, but according to the distance weight and
the orientation of the edges. Therefore, we sort the edges
according to

w′
ij = αwij/wmax + (1 − α)γij/γmax, (3)

where wij is the distance weight of edge eij , γij denotes the
angle of edge eij , and α ∈ [0; 1] is a parameter that controls
the influence of wij and γij . The distance weights as well as
the angle of edges are normalized using the maximum values
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Figure 3: We show the average distance dg,opt be-
tween trees Tg generated by a greedy strategy and
optimal solutions Topt over α for randomly gener-
ated OCST instances with 10, 15, and 20 nodes.
The greedy algorithm subsequently inserts edges in
a tree starting with edges of low w′

ij.

wmax = max(wij) (i, j = 1, . . . , n) and γmax = max(aij)
(i, j = 1, . . . , n). Therefore, w′

ij ∈ [0, 1].
After transferring all common edges to the offspring and

sorting the remaining edges according to w′
ij , we add edges

to the offspring by using either greedy or 2-tournament selec-
tion from Sect. 3.1 using w′

ij instead of the distance weight
wij . Therefore, with lower w′

ij , the probability of an edge eij

to be included in the offspring increases when using greedy or
2-tournament crossover (and increases when using inverse-
weight-proportional crossover). Setting α = 1, only the dis-
tance weights are considered and we obtain the crossover
variants described in Sect. 3.1. For α 6= 1, the orientation of
edges influences the probabilities of the edges to be included
in the offspring.

3.3 Balancing weight and orientation
This section studies how to set α. Therefore, we investi-

gate how strong distance weights and orientation should be
considered for the construction of offspring solutions. The
goal is to identify a proper value for the parameter α that
results in high and robust performance of ES crossover op-
erators. For that purpose, we generate random trees using
the greedy selection strategy (see Sect. 3.1) which iteratively
selects edges from the set E of all edges. However, the strat-
egy does not select edges according to wij but according to
w′

ij (see (3)). We study the quality of the solutions created
by the greedy strategy and measure the distance of these
spanning trees to optimal solutions for different values of α.
Furthermore, optimal solutions are obtained for the differ-
ent problem instances as described in Sect. 2.3. We present
results for 100 randomly generated OCST problem instances
with 10, 15, and 20 nodes (see Sect. 2.2 for the specification
of the randomly generated test problems).

Figure 3 shows the average distance dg,opt between trees

Tg generated by greedy selection and the optimal solutions
Topt over α. The mean values are plotted as bold lines and
the standard deviations are plotted as regular lines. The
plots indicate similar results for all three problem sizes. For
α = 1, the greedy selection method only depends on the
distance weights and thus creates MSTs. Therefore, the
resulting dg,opt for α = 1 are equivalent to the average dis-
tances of MSTs towards optimal trees. Better solutions with
a lower distance towards the optimal tree can be obtained
for α ≈ 0.8. This means that considering both orientation
and distance weight results into better solutions for OCST
problems. Finally, with lower values of α the average dis-
tance rises constantly until α = 0. Therefore, considering
only orientation and no distance weights (α = 0) results into
worse solutions than considering only distance weights and
no orientation (α = 1).

We introduced the orientation of edges as a new criteria
that can be considered in the crossover operator of edge-sets.
We performed experiments to analyze the trade-off between
distance weight and orientation, which revealed that the in-
fluence of the distance weight should be higher than that of
orientation. However, orientation matters since a combina-
tion of both yields better solutions in comparison to using
only one criteria. We recommend setting α = 0.8.

3.4 Performance of EAs using the extended
operator

The final experiments compare the performance of EAs
using different variants of the heuristic crossover operator.
First, we study small problem instances where we determine
optimal (or near-optimal) solutions as described in Sect. 2.3.
Then, we examine larger problem instances with unknown
optimal solutions.

3.4.1 Small problem instances
To study the performance of the crossover operator, we ap-

ply a simple steady-state EA using the extended crossover
operators proposed in Sect. 3.2. For the experiments, we
use non-heuristic initialization and mutation as described in
[9]. A population consists of N = 50 individuals. In each
search step, one offspring is created by crossover (crossover
probability pc = 1) and mutation (mutation probability
pm = 1/l). The two parents are selected at random. If
the cost of the offspring is lower than the cost of the worst
individual in the population ((w(Toff ) ≤ max(w(Ti) for
i ∈ {0, . . . , N − 1})), the offspring replaces the worst in-
dividual in the population. We present results for OCST
instances of different sizes (n = 8, n = 10, n = 12, n = 14,
n = 16, n = 18, n = 20), where the optimal solutions are
calculated as described in Sect. 2.3. The EA terminates af-
ter eval = 3, 000 fitness evaluations. For every problem size,
100 OCST instances are generated randomly and for each
instance and configuration 20 EA runs are performed.

We compare three crossover operators which use the edge-
selection strategies discussed in Sect. 3.1:

1. random crossover (RX): Non-heuristic crossover
using KruskalRST*.

2. greedy crossover (GDOX): The edges are greedily
selected according to d′.

3. 2-tournament crossover (TDOX): The edges are
selected via tournament selection and the quality of
edges is measured by d′.



Table 1: EA performance for small problem instances

n MST RX
GDOX TDOX

α=1 α=0.9 α=0.8 α=0.7 α=1 α=0.9 α=0.8 α=0.7

8

Psuc - 0.96 0.93 0.97 0.96 0.94 0.95 0.98 0.98 0.97
w(Tbest) 973.26 901.42 901.95 901.06 901.32 901.64 901.48 901.11 901.03 901.12

σ - 1.55 0.74 0.31 0.56 0.7 0.77 0.44 0.37 0.55

10

Psuc - 0.85 0.51 0.66 0.66 0.66 0.7 0.79 0.82 0.8
w(Tbest) 1650.37 1482.49 1487.69 1484.61 1485.08 1485.53 1483.36 1482.04 1482.05 1482.64

σ - 5.88 5.16 3.9 4.03 3.85 4.43 3.41 2.79 3.18

12

Psuc - 0.67 0.21 0.31 0.45 0.42 0.41 0.52 0.64 0.64
w(Tbest) 2499.57 2212.42 2234.34 2221.06 2215.66 2218.28 2217.05 2211.51 2209.34 2209.79

σ - 17.95 14.52 10.22 8.46 9.61 12.23 9.21 7.27 6.83

14

Psuc - 0.38 0.07 0.15 0.18 0.18 0.17 0.28 0.36 0.38
w(Tbest) 3644.15 3171.37 3216.2 3192.44 3179.24 3188.28 3180.51 3167.86 3161.19 3162.88

σ - 43.03 25.82 21.33 17.96 21.02 24.29 17.94 14.77 15.58

16

Psuc - 0.08 0.01 0.03 0.06 0.06 0.03 0.08 0.14 0.17
w(Tbest) 4860.12 4221.45 4286.16 4231.47 4213.01 4234.03 4223 4189.25 4178.67 4180.18

σ - 80.71 44.13 35.59 31.65 39.66 44.97 31.3 27.77 26.27

18

Psuc - 0.01 0 0.02 0.02 0.03 0 0.03 0.05 0.06
w(Tbest) 6338.01 5481.18 5529.07 5452.04 5426.05 5472.88 5432.22 5379.33 5360.58 5368.14

σ - 149.98 69.78 55.01 56.28 78.01 75.16 53.45 47.71 52.7

20

Psuc - 0 0 0 0 0.01 0 0 0.01 0.02
w(Tbest) 8124.94 7089.84 7050.09 6948.55 6927.66 6989.15 6933.24 6852.88 6806.16 6811.12

σ - 241.08 93.49 80.94 93.13 121.5 105.38 84.92 77.3 79.8

Table 1 lists the percentage Psuc of runs that find Topt,
the average costs w(Tbest) of the best found solution, and
the corresponding standard deviation σ. We show results
for different values of α and the best values are printed bold.
The results indicate a high performance of the EA with
heuristic crossover operators. The EA with non-heuristic
crossover (RX) has a high success probability Psuc for small
problem sizes (n ≤ 14). With larger problem sizes, EAs
using the heuristic crossover TDOX perform better. Es-
pecially when setting α = 0.8, high EA performance can
be achieved. Comparing greedy (GDOX) and 2-tournament
crossover (TDOX) shows that tournament selection performs
better than the versions with greedy crossover throughout all
problem sizes. Furthermore, the results reveal that the per-
formance of the heuristic crossover variants increases, if the
selection strategy does not consider only distance weights
(α = 1) but distance weights and orientation (α < 1). Con-
sequently, the lowest average costs w(Tbest) are reached with
TDOX and α = 0.8.

Next, we study how the performance of the heuristic cross-
over depends on the distance dopt,mst between optimal solu-
tions and MSTs. We use the same problem instances as in
the experiment above. The plots in Fig. 4 show the percent-
age of runs Psuc which find the optimal solution over dopt,mst

(left) and the gap
w(Tbest)−w(Topt)

w(Topt)
(in percent) between the

costs of the best found solution Tbest and the optimal solu-
tion Topt (right). We only present results for n = 12 since
the results for other problem sizes are analogous. Further-
more, we show results only for dopt,mst ∈ {1, ..., 7} as in our
experiments larger distances occur in only three instances.
The findings confirm previous results that optimal solutions
of OCST problems are similar to MSTs [16]. In our current
study, we want to examine how EA performance depends on
α for different dopt,mst.

The results show that EA performance using TDOX with
α = 1 (this is the original crossover operator proposed by [9]
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Table 2: Number of fitness evaluations eval for large
problem instances

n 25 50 100
eval 5,000 20,000 80,000

considering only distance weights) and α = 0.9 is maximal
for OCST instances with low distance dopt,mst. Since these
problem instances are strongly biased towards MSTs and op-
timal solutions are only a few edges different from the MST,
selection strategies that are based on the distance weights
alone are very successful. However, with increasing distance
dopt,mst, the performance of EAs using TDOX with high α
drops sharply. This findings confirm previous results that
the heuristic variants of edge-sets fail for OCST problems
where the optimal solutions are more different from MSTs
[16]. In contrast, EAs using heuristic crossover (TDOX) who
consider the orientation of edges (α = 0.8 or α = 0.7) show
high performance for problems with larger dopt,mst. Com-
paring EAs using TDOX with α = 1 to α = 0.8 shows that
setting α to 1 allows to find more often the optimal solution
if it is only slightly different from the MST (which is no sur-
prise since only distance weights are considered for selecting
the edges of offspring) but for higher dopt,mst setting α = 0.8
is a much better choice. Furthermore, in all cases, the gap
to the optimal solution is relatively small for the variants
α = 0.8 and α = 0.7.

Overall, EA performance is high when using heuristic cross-
over with tournament selection. The variants with α = 1
show only high performance if the distances between opti-
mal solutions and MSTs are low, whereas the variants with
α = 0.8 perform well independently of the structure of the
optimal solution. Therefore, our conjecture from the previ-
ous section can be confirmed and setting α = 0.8 yields in
high and robust EA performance.

3.4.2 Larger problem instances
In this section we study the performance of the heuristic

crossover operators for larger OCST instances with unknown
optimal solution. The performance is measured by the costs
of the best found solution.

We use the same EA as in the previous experiments. A
population consists of N = 200 individuals and each EA run
is stopped after eval fitness evaluations (see table 2). As EA
performance usually increases with the number of fitness
evaluations, we increase the number of fitness evaluations
with larger n. We present results for OCST instances with
different problem sizes (n = 25, n = 50, n = 100). For each
problem size, 100 random instances are created. Due to
computational restrictions, we investigate only 25 instances
for n = 100. The same crossover operators as before are
used and for each configuration and each problem instance
we perform 20 EA runs.

Table 3 presents the average costs w(Tbest) of the best
found solution Tbest over the 20 EA runs. Additionally, the
standard deviation σ of the costs and the running time tCPU

(in seconds) of one run is shown. The results indicate a high
performance of EAs with heuristic crossover especially if the
orientation of the edges is included in the selection strategy.
EAs using TDOX with α = 0.8 perform best for all problem
sizes since the average total cost are always lowest. Fur-
thermore, heuristic variants clearly outperform non-heuristic
ones. Comparing the different heuristic configurations re-
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Figure 5: EA performance using different crossover
variants for randomly generated OCST instances.
The plots show the average gap between the cost
of the best found solution and the MST over the
problem size n. The larger the gap, the higher the
EAs performance.

veals the superiority of the variants with 2-tournament se-
lection.

The plots in Fig. 5 summarize the results. We show the

average gap w(Tmst)−w(Tbest)
w(Tmst)

(in percent) between the best

found solution Tbest and the MST over the problem size
n. A large gap indicates high EA performance. We have
chosen the MST as reference since the MST is often a high-
quality solution for OCST problems. The plots show that
solutions found by EAs using TDOX and α = 0.8 perform
best and result in a largest gap towards the MST. Non-
heuristic variants (RX) show low performance.

The results for the CPU times (see Table 3) are analo-
gously to the results for the solution quality. Using heuris-
tic crossover does not increase the required CPU time. The
variants with greedy edge selection slightly need more time
in comparison to the variants with tournament selection.
This is due to the fact that with tournament selection no
sorting of edges is required but only comparisons between
pairs of edges are performed.

The results confirm the findings of the previous exper-
iments. The performance of EAs with heuristic crossover
can be increased by considering the orientation of the edges
when selecting the edges for the offspring (α = 0.8). Heuris-
tic variants using a tournament selection strategy outper-
form greedy selection strategies.

4. SUMMARY AND CONCLUSIONS
This work studies the OCST problem and shows that

edges in optimal solutions are not uniformly oriented but
edges pointing towards the center of a tree occur with higher
probability. Thus, the performance of EA search operators
can be improved by using this knowledge to create high-
quality solutions.



Table 3: EA performance for large problem instances

n MST RX
GDOX TDOX

α=1 α=0.9 α=0.8 α=0.7 α=1 α=0.9 α=0.8 α=0.7

25
w(Tbest) 13049.08 14312.49 11457.06 11175.14 11244.56 11553.89 11146.29 10907.53 10818.91 10910.77

σ - 687.29 133.46 127.56 168.08 206.66 136.88 107.55 97.49 117.89
tcpu - 0.57 0.56 0.55 0.55 0.54 0.57 0.57 0.56 0.56

50
w(Tbest) 59415.65 61559.62 49668.48 47930.97 48206.69 49554.99 47378.36 45605.4 45181.33 45602.33

σ - 5896.98 672.24 673.99 871.51 1077.2 649.56 444.76 442.07 554.85
tcpu - 8.59 8.84 8.5 8.07 7.83 8.54 8.26 7.94 7.72

100
w(Tbest) 268781.16 209537.14 205277.83 196011.25 199009.46 205574.85 192976.41 185458.41 184532.28 186093.21

σ - 17877.01 3214.57 3068.94 4539.86 5525.38 2501.16 1498.26 1544.91 1819.92
tcpu - 173.11 197.72 183.34 173.58 168.19 185.28 175.43 167.93 162.25

To show how this observation can be considered for the
design of efficient EAs for the OCST problem, the edge-set
encoding is used and extended. The edge-set encoding is a
direct representation for trees which represents trees directly
as sets of edges. Offsprings are created by iteratively select-
ing edges from the parental trees. Unlike existing heuristic
edge-selection strategies, the proposed GDOX and TDOX
crossover operators consider distance weights of edges and
orientation of edges. The edges of parental trees are sorted
according to their weight as well as orientation and edges
that have low weight and point towards the center of the
tree are included with higher probability in the offspring.
We examine the performance of the extended crossover op-
erators GDOX and TDOX for various test problems and find
that crossover operators of the edge-sets using both crite-
ria, weight and orientation, outperform existing approaches
which only consider distance weights. Especially crossover
using tournament selection as edge-selection strategy are
very effective and efficient throughout all test instances.

The results presented in this work suggest to use heuristic
crossover operators which prefer edges that point towards
the center of a tree and have low distance weights to im-
prove the performance of EAs for the OCST problem. By
considering also the orientation of edges, the strong bias of
existing heuristic crossover operators towards MST-like solu-
tion can be reduced. Furthermore, crossover strategies with
tournament edge-selection strategies should be preferred in
comparison to greedy variants, because of their higher effi-
ciency and robustness.

Future work will address how the knowledge about the ori-
entation of edges can be used in other encodings, e.g. NetDir
[10]. Another promising area is the development of problem-
specific mutation and initialization operators for edge-sets
which consider the orientation of the edges.
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