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Abstract

Of late, much progress has been made in developing Estimation of Distribution

Algorithms (EDA), algorithms that use probabilistic modelling of high quality solu-

tions to guide their search. While experimental results on EDA behaviour are widely

available, theoretical results are still rare. This is especially the case for continuous

EDA. In this article, we develop theory that predicts the behaviour of the Univariate

Marginal Distribution Algorithm in the continuous domain (UMDAc) with trunca-

tion selection on monotonous fitness functions. Monotonous functions are commonly

used to model the algorithm behaviour far from the optimum. Our result includes

formulae to predict population statistics in a specific generation as well as population

statistics after convergence. We find that population statistics develop identically for

monotonous functions. We show that if assuming monotonous fitness functions, the

distance that UMDAc travels across the search space is bounded and solely relies on

the percentage of selected individuals and not on the structure of the fitness land-

scape. This can be problematic if this distance is too small for the algorithm to find

the optimum. Also, by wrongly setting the selection intensity, one might not be able

to explore the whole search space.

1 Introduction

In recent years, much progress has been made in developing optimization tech-
niques that use probabilistic models to guide the search for optimal or high
quality solutions. These methods are called Estimation of Distribution Algo-
rithms (EDA), Probabilistic Model Building Algorithms (PMBGA) or Iterated
Density Estimation Algorithms (IDEAs). They constitute a rapidly growing,
yet already established field of evolutionary computation.
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EDA share the common feature that the joint distribution of promising so-
lutions is estimated on the basis of an adequate probabilistic model. Then, new
candidate solutions are generated by sampling from the model estimated. Ge-
netic operators like crossover and mutation which are widely used in the field
of traditional genetic algorithms (GA) are not used to generate new solutions.
Rigorously applying this principle, EDA for the discrete domain (for example,
see [9], [6], [2]), the continuous domain (for example [3], [1]) as well as the mixed
discrete-continuous domain (see for example [8]) have been developed.

Their behaviour and area of applicability is most often demonstrated ex-
perimentally. But in contrast to the wide availability of experimental results,
theoretical results on the behaviour of EDA are still rare. This is especially the
case for real valued EDA.

Our work focuses on the Univariate Marginal Distribution Algorithm in the
continuous domain (UMDAc), first mentioned in [7]. The interested reader
might want to consult the work by González, Lozano and Larrañaga ([4]). They
analyze the UMDAc algorithm with tournament selection for linear and qua-
dratic fitness functions.

In our paper, we present complementary work. We analyze UMDAc be-
haviour when the truncation selection scheme is used. We present an approach
to model the behaviour on the set of monotonous functions. We focus on
monotonous functions to model UMDAc behaviour when far from the optimum.
We derive formulae that allow us to readily compute population statistics for
a given generation t. Furthermore, we show how the population statistics con-
verge, if t tends to infinity. We discuss why this behaviour can be problematic.

This article is structured as follows. In section 2, the UMDAc algorithm
with truncation selection is introduced. Afterwards, we analyze the effect of
the truncation selection scheme for use with monotonous fitness functions in
section 3. Then, we derive analytical expressions in section 4. First, we show
how population statistics change from generation t to generation t + 1 (sections
4.3 and 4.4), then we analyze population statistics in generation t (section 4.5).
Finally, we investigate convergence behaviour of UMDAc in section 4.6. Our
results are discussed in section 4.7. In section 5, the paper ends with conclusions
and a short outlook.

2 UMDAc with truncation selection

In the following paragraphs, we describe the UMDAc algorithm with truncation
selection.

UMDAc was introduced in [7] as a population-based technique for optimizing
continuous functions. If we assume, that we want to maximize an n-dimensional
function f by using the UMDAc algorithm, a single solution is represented as a
vector x ∈ R

n. Using UMDAc, we seek to find the vector x
? that maximizes f .

A first population of candidate solutions is sampled uniformly from the set
of feasible solutions. The fitness of each individual is evaluated using f . Now
we use truncation selection of the best α ·100% individuals. This means, given a
population size of Z individuals, we select the α ·Z best individuals. Selection,
pushes the population towards promising regions of the search space.

From these selected individuals the following probabilistic model is esti-
mated. In UMDAc it is assumed, that the joint distribution of the selected

2



individuals follows a n-dimensional normal distribution that factorizes over n

univariate normals. That is, the covariances between all xi and xj are 0 for all
i 6= j. Thus, in generation t, the n variables X1...n follow a univariate normal
distribution with mean µt

i and standard deviation σt
i :

Xi ∼ N(µt
i, σ

t
i)

P (Xi = xi) = φµt
i
,σt

i

=
1√

2πσt
i

exp

{

− (xi − µt
i)

2

2(σt
i)

2

} (1)

The parameters µt
i and σt

i are estimated from the selected individuals by
using the well known maximum likelihood estimators for moments of the uni-
variate normal distribution.

Now, new individuals are generated by sampling from the estimated joint
density. These individuals completely replace the old population. The algo-
rithm continues with truncation selection again. This process is iterated until a
termination criterion is met. For further details on UMDAc, we refer to [7].

In UMDAc, the essential parameters are µt
i and σt

i . We are interested in
how these parameters change over time. Therefore, in the following section we
make some assumptions on the structure of f .

3 Monotonous fitness functions and truncation
selection

In the previous section, the UMDAc algorithm was introduced. We saw that a
fitness function f needs to be specified for evaluating the population. In many
work on parameter optimization, highly complex fitness functions are used as
benchmark problems. These functions exhibit deceptive structures, multiple
optima, and other features that makes optimizing them a stiff test.

In this article, we make simplified assumptions on the structure of f . In
particular, we focus on the behaviour of UDMAc on monotonous functions.
This set of functions includes, but is not limited to linear ones. This can be
seen as a way to model the structure of the search space far away from the
optimum. A nice side effect is reduced complexity of our analytical analysis.

In the following we will introduce monotonous fitness functions. Further-
more, We will show an interesting result that occurs when combining trunca-
tion selection with monotonous fitness functions. This result will be of some
importance later on.

Let S be a population of individuals. Let xj and xk ∈ S be two distinct
individuals of the population and let gi : R → R be a fitness function defined
over the i − th gene of the individuals. Then,

gi is increasing if xj ≤ xk implies that

gi(xj) ≤ gi(xk) ∀xj , xk ∈ S

gi is decreasing if xj ≤ xk implies that

gi(xj) ≥ gi(xk) ∀xj , xk ∈ S.

(2)

We consider a fitness landscape monotonous if the fitness function f is either
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increasing or decreasing. Note that the class of monotonous functions includes,
but is not limited to linear functions.

Assume that a population P of individuals is given. We use l different
increasing functions f1...l to evaluate this population P . After each evaluation
process, we use truncation selection of the best α · 100% of the individuals and
call the l sets of selected individuals M1...l. It is a simple, yet interesting fact
that all sets M1...l have to be identical. Note that the fitness of the selected
individuals may of course be different. For our analysis it is more important
that the selected individuals are identical. Note that if all fitness functions are
decreasing, this fact is true as well.

UMDAc uses density estimation and sampling to generate new candidate
solutions. In the density estimation process, the fitness of the individuals is
not considered. Density estimation solely relies on the genotypes of the selected
individuals, which is the x. As the parameters µt

i and σt
i are estimated from the

x, they are identical for all f1...l.
This fact simplifies our further analysis. We can now state that the UMDAc

will behave the same for all increasing fitness functions (and for all decreasing
functions). Thus, we can base our analysis on the simplest monotonous function
that is the linear one. Yet, we know that our results are valid for all monotonous
functions.

4 UMDAc for monotonous fitness functions

In the following paragraphs, we model the behaviour of UMDAc with truncation
selection on fitness functions of the type

f(x) =

n∑

i=1

gi(xi), (3)

where gi(xi) is an increasing function. Note, that the case of decreasing func-
tions does not provide additional insight. Thus, we focus our analysis on in-
creasing functions.

The specific structure of the fitness function allows us a decomposition.
UMDAc factorizes over n univariate normals. The fitness function consists of a
sum of n univariate monotonous functions.

Thus, we can reduce our analysis to the analysis of one single gi(xi). We
develop mathematical expressions that model how µt

i and σt
i change over time.

More specifically, we are interested in µt+1
i and σt+1

i given the corresponding
parameter values at generation t.

Furthermore, we analyze population statistics for a specific generation and
the limit behaviour of UMDAc. This means we investigate the convergence of
µt

i and σt
i for t → ∞.

4.1 Notation

The following symbols are used in our analysis:
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Fitness function

Population density

Fitness distribution

PSfrag replacements

µi

p(xi)

Selected best α · 100% of the individuals

xi

xi

xm

µf
y(xi)

y(xi)p(y(xi))

ym

(a)

(b) (c)

Figure 1: Impact of truncation selection of the best α · 100% individuals on the
fitness distribution (b) and the population density (a). We assume an increasing
fitness function (c). The fitness distribution is truncated from the left in ym.
The population distribution is truncated from the left in the corresponding point
xm.

φ(x) Standard normal density at value x

φµ,σ(x) Normal density with mean µ and stan-
dard deviation σ at value x

Φ(x) Cumulative standard normal density, x ·
100% quantile

Φµ,σ(x) Cumulative density of normal distribu-
tion with mean µ and standard devia-
tion σ, x · 100% quantile

Φ−1(x) Quantile function of standard normal
density

Φ−1
µ,σ(x) Quantile function of normal distribution

with mean µ and standard deviation σ

4.2 Monotonous fitness functions and truncation selection

We analyze the truncation selection step in presence of fitness functions of type
(3).

Due to the structure of UMDAc’s probabilistic model and the structure of
f(x), we can decompose the fitness function and analyze the behaviour of each
µi and σi independently.

As we have seen in section 3, we can simplify our approach even further and
replace all gi(xi) by linear functions of the form yi(xi) = ai · xi + bi and study
how truncation selection influences the population statistics.

In UMDAc, new candidate solutions are generated by sampling new individ-
uals xi from a normal distribution with mean µt

i and variance (σt
i)

2. The fitness
yi is obtained from a linear function yi = ai · xi + bi. As the x are realizations
of a random variable, the fitness also is a random variable. The distribution of
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the fitness Y can be expressed in terms of a normal random variable with mean
µf and variance σ2

f :

µf = ai · µi + bi

σ2
f = a2

i · (σt
i)

2
(4)

By truncation selection, the best α · 100% of the individuals are selected. Thus,
all individuals with a fitness larger than a fitness minimum of ym are selected.
Their probabilities sum up to α. Since the fitness is normally distributed, ym

can be obtained from the quantile function of the normal distribution as follows:

ym = Φ−1
µf ,σf

(1 − α)

= Φ−1(1 − α) · aiσ
t
i + aiµ

t
i + bi

Statistically, the fitness distribution is truncated from below at ym. We refer to
ym as the fitness truncation point. Now, we are interested in the individual xm

that corresponds to the fitness value ym. All individuals xi > xm are selected.
We call xm the corresponding population truncation point. This is illustrated
graphically in figure 1. The fitness truncation point ym can be transformed into
the population truncation xm as follows.

xm = y−1(ym)

=
(ym − bi)

ai

=
Φ−1(1 − α) · aiσ

t
i + aiµ

t
i + bi − bi

ai
ai 6= 0

= Φ−1
µt

i
,σt

i

(1 − α)

(5)

It is interesting to see that obviously the truncation point is independent from
ai and bi(ai > 0). Put differently, no matter which linear function with ai > 0
we choose, the population truncation point remains the same. Thus, the effect
of selection is independent from ai and bi, for all ai > 0. No matter how these
parameters are chosen, the same individuals are selected.

As we have seen in this section, the selected individuals are identical for all
linear functions yi(xi), where ai > 0. Furthermore, the population truncation
point solely relies on statistical parameters of the population. Thus, the selected
individuals can be obtained from the population statistics directly without tak-
ing a look at the fitness landscape.

4.3 Change of µt

i
to µt+1

i

We have seen that the effect of truncation selection is identical for all linear
functions yi with positive gradient. We have also shown, that for predicting the
behaviour of UMDAc we do not need to model the distribution of the fitness.
The change in population statistics can be obtained from the population statis-
tics directly. In this section, we derive mathematical expressions for the change
of the population mean from generation t to generation t + 1.

We model selection by truncation of the normally distributed population
density. Assume that a population is distributed with mean µt

i and standard
deviation σt

i . The fitnesses of the individuals are calculated and the best α·100%
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individuals are selected. This equals a left-truncation of the normal distribution
in xm.

To do this, we first refer to results from econometric literature on the trun-
cated normal distribution (see [5], appendix). We start with presenting the mo-
ments of a doubly truncated normal distribution. A doubly truncated normal
distribution with mean µ and variance σ2, where xa < x < xb can be modeled
as a conditional density where x ∈ A = [xa, xb] and −∞ < xa < xb < +∞.

f(X|X ∈ A) =
1
σ φ
(

x−µ
σ

)

Φ
(

xb−µ
σ

)
− Φ

(
xa−µ

σ

) (6)

The moment generating function of this distribution is:

m(t) = E(etX |X ∈ A)

= eµt+σ2t2/2 · Φ
(

xb−µ
σ − σt

)
− Φ

(
xa−µ

σ − σt
)

Φ
(

xb−µ
σ

)
− Φ

(
xa−µ

σ

)
(7)

From the moment generating function, we can derive the statistical moments of
the distribution. We are interested in the mean. It can be computed as follows:

E(X|X ∈ A) = m′(t)|t=0

= µ − σ · φ
(

xb−µ
σ

)
− φ

(
xa−µ

σ

)

Φ
(

xb−µ
σ

)
− Φ

(
xa−µ

σ

)
(8)

We are not interested in the mean of a doubly truncated normal distribution,
but in the mean of a left-truncated normal distribution. Thus, we now let xb

tend to infinity. This results in:

E(X|X > xa) = µ + σ · φ(xa−µ
σ )

Φ(xa−µ
σ )

(9)

From section 4.2 we know that xa = xm = Φ−1
µt

i
,σt

i

(1 − α). Inserting and rear-

ranging leads to:

µt+1
i = E(X|X > xm)

= µt
i + σt

i ·
φ
(
Φ−1(α)

)

α

= µt
i + σt

i · d(α), where d(α) =
φ
(
Φ−1(α)

)

α

(10)

Note that the mean of the population after applying truncation selection can
now be easily computed. The factor d(α) is illustrated in figure 2. It can be
seen that for α → 1 the factor d(α) converges to 0 leaving the mean of the
population unchanged in t + 1.

4.4 Change of σt

i
to σt+1

i

Again, we model truncation selection by truncation of the normally distributed
population density. Therefore, we again make use of the moment generating
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Figure 2: Illustration of c(α) and d(α)

function as in section 4.3. We let xb → ∞. Finally, we get:

V ar(X|X > xm) = E(X2|X > xm) − E(X|X > xm)2

= σ2 ·
{

1 +
xm−µ

σ · φ
(

xm−µ
σ

)

1 − Φ
(

xm−µ
σ

)

−
[

φ
(

xm−µ
σ

)

1 − Φ
(

xm−µ
σ

)

]2





(11)

We use this equation in the context of our model by assigning appropriate
indices, inserting xm, simplifying, and rearranging. This leads us to:

(σt+1
i )2 = (σt

i)
2 ·
{

1 +
Φ−1(1 − α)φ

(
Φ−1(α)

)

α
−

[

φ
(
Φ−1(α)

)

α

]2





= (σt

i)
2 · c(α)

where c(α) =

{

1 +
Φ−1(1 − α)φ

(
Φ−1(α)

)

α
−

[

φ
(
Φ−1(α)

)

α

]2





(12)

Now, we can compute the population variance in t+1, given the population
variance in t. The factor c(α) is plotted in figure 2. It can be seen, that if
α → 1, the factor c(α) converges to 1, leaving the variance in generation t + 1
unchanged.

4.5 Population statistics in generation t

The last two subsections examined the change of the population statistics from
one generation to the next generation.

Now, we calculate how the population mean and variance depend on t. To
obtain the corresponding population statistics, we sum up the iterative formulae
that have been developed in 4.3 and 4.4.
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Doing this we get the following result for the mean after some calculations. In
generation t > 0, the mean µt

i can be computed as:

µt
i = µ0

i + σ0
i · c(α) ·

t∑

i=1

√

d(α)i−1 (13)

Similarly, in generation t ,the variance σ2
t can be computed as:

(σt
i)

2 = (σ0
i )2 · c(α)t (14)

4.6 Convergence of population statistics for t → ∞
In this section, we analyze convergence of UMDAc. That means that we analyze
how the population statistics develop over time, assuming that t → ∞.

First, we consider the mean. Therefore, we make use of (13). Note that the
sum is the only part of the expression that depends on t. This leads us to:

lim
t→∞

µt
i = µ0

i + σ0
i · c(α) · lim

t→∞

t∑

k=1

[√

d(α)(k−1)

]

︸ ︷︷ ︸

infinite geometric series

(15)

The last part is an infinite geometric series that can be simplified. After doing
this, we get the following result:

lim
t→∞

µt
i = µ0

i + σ0
i · c(α) · 1 +

√

d(α)

1 − d(α)
(16)

We can decompose the last factor, leading to:

lim
t→∞

µt
i = µ0

i + σ0
i · 1 +

√

1 + e(α) · z(α)

−z(α)
, (17)

with:

e(α) = Φ−1(1 − α)

h(α) =
φ(e(α))

α

z(α) = e(α) − h(α)

(18)

This expression allows us to compute the maximum distance, that UMDAc’s
mean will move across the search space for a given selection intensity of α ·100%
and monotonous fitness functions.

Now, we consider the variance. We make use of (14) and let t tend to infinity.
Note that 0 < c(α) < 1. This leads to

lim
t→∞

(σt
i)

2 = lim
t→∞

[
(σ0

i )2 · c(α)t
]

= 0
(19)

Thus, the variance converges towards 0.
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4.7 Interpretation of results

In the previous paragraphs, we derived expressions to describe the behaviour of
the UMDAc algorithm with truncation selection on monotonous functions.

We have seen that the algorithm converges since the population variance
converges towards 0. The maximal distance that the mean of the population
can move across the search space is bounded. This distance solely depends on

• the mean of the first population,

• the variance of the first population,

• and the selection intensity α.

This has some important effects on the behaviour of UMDAc. First, if the
optimum of the search space lies outside this maximal distance, the algorithm
can not find it and one will experience premature convergence. Furthermore, the
first population is usually sampled uniformly in the space of feasible solutions.
The exploration of the search space relies on density estimation and sampling.
However, by choosing the amount of individuals that are selected, one can adjust
the maximal distance that the mean of the population will move. One needs to
be careful when choosing the selection intensity α. By wrongly setting α, the
algorithm might not even be able to sample all feasible points.

5 Conclusion

In this article, we have analyzed the behaviour of UMDAc on monotonous fitness
functions. This set of functions includes, but is not limited to, linear functions.
Therefore, we have developed mathematical expressions for the mean and the
variance of the population.

Our findings are as follows. First, we have shown that using truncation
selection of the best α · 100% of the individuals has an interesting effect. In this
case, a linear fitness with any positive (negative) gradient can be used as a valid
replacement for any increasing (decreasing) function. This replacement has no
effect on the population statistics but makes the analysis easier. Furthermore,
results obtained for linear fitness functions with positive (negative) gradient are
valid for all increasing (decreasing) fitness functions.

Then we have analyzed the population statistics (mean and variance) for a
given generation t. For doing this the fitness landscape does not need to be
modeled explicitly.

We showed how the convergence behaviour of UMDAc depends on the selec-
tion pressure α. Furthermore, we obtained the maximal distance that UMDAc’s
mean will move across the search space for a monotonous function and found
that UMDAc will behave identically on all of these fitness functions.

This can be problematic if the optimum lies outside this maximal distance.
In this case, the algorithm will not find it but converge before. Furthermore, by
wrongly setting α, the algorithm might even not be able to explore the entire
search space at all. These are important limitations of the UMDAc algorithm
with truncation selection.

Work is underway to apply the findings described above to predict success
probability of UMDAc. Also, we want to model UMDAc behaviour on peaks
and analyze the case that covariances between the xi are different from zero.

10



References

[1] C. W. Ahn, R. S. Ramakrishna, and D. E. Goldberg. The real-coded bayesian
optimization algorithm: Bringing the strength of boa into the continuous
world. In Proceedings of the GECCO 2004, 2004.

[2] S. Baluja. Population-based incremental learning: A method for integrating
genetic search based function optimization and competitive learning. Tech-
nical Report CMU-CS-94-163, Carnegie Mellon University, 1994.

[3] P. A. N. Bosman. Design and Application of Iterated Density-Estimation

Evolutionary Algorithms. PhD thesis, University of Utrecht, Institute of
Information and Computer Science, 2003.
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