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Abstra
t

This paper sheds some light on the debate


on
erning evolutionary sear
h using Pr�ufer

numbers, and explains some of the 
ontrover-

sial results. Previous work has shown that

Pr�ufer numbers have low lo
ality. Further-

more, it has been shown elsewhere that the

lo
ality of the Pr�ufer number depends on the

stru
ture of the en
oded tree. The lo
ality of

a Pr�ufer number is high if it en
odes a star

network, and low elsewhere. The paper illus-

trates that when applying mutation- as well

as re
ombination-based geneti
 sear
h to the

one-max tree problem, whi
h allows to 
hoose

the stru
ture of the optimal solution a priori,

that both types of evolutionary sear
h fail if

the optimal solution is not star-like.

Therefore, the performan
e of evolutionary

sear
h depends on the stru
ture of the opti-

mal solution. If the high quality solutions are

star-like, resear
hers see a good performan
e,

whereas for other types of networks a failure

is ines
apable. Therefore, resear
hers are ad-

vised not to use Pr�ufer numbers on problems

of unknown 
omplexity be
ause the en
oding

is not robust and its performan
e depends on

the stru
ture of the optimal solution.

1 Introdu
tion

Pr�ufer numbers are a widely used representation for

trees. However, the performan
e of geneti
 and evo-

lutionary algorithms using Pr�ufer numbers is strongly

disputed.

�
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This paper gives an explanation for the 
ontroversial

statements about the performan
e of Pr�ufer numbers

and explains why some resear
hers report high, and

others report low, performan
e. We know from earlier

work (Rothlauf & Goldberg, 1999) that the lo
ality of

Pr�ufer numbers is high only when en
oding star net-

works. Therefore, mutation-, as well as re
ombination-

based geneti
 sear
h using Pr�ufer numbers, only per-

forms well if the optimal solutions are star-like. For

other types of networks a failure is ines
apable. As a

result, resear
hers who use Pr�ufer numbers for prob-

lems where the optimal solution is star-like see a well

performing GA, whereas others who use Pr�ufer num-

bers for �nding non-star-like trees report a failure.

The paper starts with a histori
al review of the 
on-

troversial debate about the use of the Pr�ufer number

en
oding in the 
ontext of geneti
 and evolutionary

sear
h. In se
tion 3 we brie
y review the results about

the low lo
ality of Pr�ufer numbers from Rothlauf and

Goldberg (1999). Finally, we present empiri
al results

for the performan
e of a mutation-based simulated an-

nealing, and a re
ombination-based GA, when solving

the one-max tree problem. The paper ends with 
on-


luding remarks.

2 Histori
al Review

The following se
tion presents a review about the 
on-

troversial debate 
on
erning the performan
e of Pr�ufer

numbers.

Cayley (1889), identi�ed the number of distin
t span-

ning trees on a 
omplete graph with n nodes as n

n�2

(Even, 1973, pp. 103-104). Later, this theorem was

proven very elegantly by Pr�ufer (1918) using the intro-

du
tion of a one-to-one 
orresponden
e between span-

ning trees and a string of length n � 2 over an al-

phabet of n symbols. This string is denoted as the

Pr�ufer number, and the genotype-phenotype mapping



is the Pr�ufer number en
oding. It is possible to derive

a unique tree with n nodes from the Pr�ufer number of

length n� 2 and vi
e versa (Even, 1973, pp. 104-106).

Later, in the 
ontext of geneti
 and evolutionary algo-

rithms, several resear
hers used the en
oding for the

representation of trees. Palmer used the en
oding in

his thesis at the beginning of the nineties (Palmer,

1994; Palmer & Kershenbaum, 1994a; Palmer & Ker-

shenbaum, 1994b), and 
ompared the performan
e of

the Pr�ufer numbers with some other representations

for the optimal 
ommuni
ation spanning tree problem.

However, he noted that the Pr�ufer number en
oding

has a low lo
ality and is therefore not a good 
hoi
e

for en
oding trees. The low performan
e of the en
od-

ing was 
on�rmed by Julstrom (1993) who used Pr�ufer

numbers for the re
tilinear steiner problem, and also

observed a low GA performan
e.

About the same time, Abuali et al. (1994) used Pr�ufer

numbers for the optimization of probabilisti
 minimum

spanning trees (PMST) with geneti
 algorithms. The

investigation fo
used more on the in
uen
e of di�erent

operators than on the performan
e of Pr�ufer numbers.

However, at the end of the work, the 
on
lusion was

drawn that in 
ontrast to Palmer and Julstrom, Pr�ufer

numbers \lead to a natural GA en
oding of the PMST

problem" (Abuali et al., 1994, p. 245). Some years

later similar results were reported by Zhou and Gen

(1997) who su

essfully used the Pr�ufer en
oding for

a degree 
onstraint minimum spanning tree problem.

The degree 
onstraint was 
onsidered by repairing in-

valid solutions that violate the degree 
onstraints. Kr-

ishnamoorthy et al. (1999) 
ompared two other ver-

sions of geneti
 algorithms that use Pr�ufer numbers.

They reported a few good results for a GA 
ompletely

removing invalid solutions from the population. Fur-

thermore, Pr�ufer numbers were used for spanning tree

problems (Gen, Zhou, & Takayama, 1998; Gen, Ida, &

Kim, 1998), the time-dependent minimum spanning

tree problem (Gargano, Edelson, & Koval, 1998), the

�xed-
harge transportation problem (Li, Gen, & Ida,

1998) and a bi
riteria version of it (Gen & Li, 1999),

and a multi-obje
tive network design problem (Kim &

Gen, 1999). Most of this work reported good results

when using Pr�ufer numbers, and label the en
oding to

be (very) suitable for en
oding spanning trees. As an

example of positive results we want to 
ite Kim and

Gen (1999) who wrote:

The Pr�ufer number is very suitable for en
oding

a spanning tree, espe
ially in some resear
h �elds,

su
h as transportation problems, minimum span-

ning problems, and so on.
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However, other relevant work by Krishnamoorthy

et al. (1999), who used Pr�ufer numbers for the de-

gree 
onstraint spanning tree problem, from Julstrom

(2000) who 
ompared a list of edges en
oding with

Pr�ufer numbers, or from Gottlieb and E
kert (2000)

who used Pr�ufer numbers for the �xed 
harge trans-

portation problem showed that Pr�ufer numbers result

in a low GA performan
e. A summarizing study by

Gottlieb, Julstrom, Raidl, and Rothlauf (2001) 
om-

pared the performan
e of Pr�ufer numbers for four dif-

ferent network problems and 
on
luded that Pr�ufer

numbers often perform worse than other en
odings,

and are not suitable for en
oding trees.

To explain the di�eren
es between the good and bad

results obtained by GAs using Pr�ufer numbers, Roth-

lauf and Goldberg (1999) investigated the lo
ality of

the en
oding more 
losely. It was shown that Pr�ufer

numbers have high lo
ality if they en
ode star net-

works. For all other types of trees, the lo
ality is low

whi
h leads to a degradation of a GA (see also Roth-

lauf and Goldberg (2000)). Therefore, the di�eren
es

in performan
e 
ould be well explained when assum-

ing that the performan
e of the GA depends on the

stru
ture of the optimal solution. Resear
hers who re-

port good solutions often used very small problems,

or problems where the optimal solution is more star-

like and therefore easy to �nd for GAs. However,

when using Pr�ufer numbers for more general problems,

a strong de
rease in GA performan
e is ines
apable.

These results were 
on�rmed by Gottlieb and Raidl

(2000) who investigated the e�e
ts of lo
ality on the

dynami
s of evolutionary sear
h.

We have seen that the performan
e of geneti
 algo-

rithms using Pr�ufer numbers is a strongly dis
ussed

topi
. Some resear
hers report good results and favor

the use of Pr�ufer numbers. Other resear
hers, how-

ever, point to the low lo
ality of the en
oding, report

worse results and advise us not to use Pr�ufer numbers.

A 
loser investigation into how lo
ality depends on the

stru
ture of the tree 
ould solve these 
ontradi
tory re-

sults. As the work from Rothlauf and Goldberg (2000)

indi
ates that the lo
ality of Pr�ufer numbers strongly

depends on the stru
ture of the tree, we expe
t GAs

to show good results if the good solutions are star-like,

and worse results for all other types.

3 The Low Lo
ality of the Pr�ufer

Number En
oding

In this se
tion we brie
y review the results 
on
erning

the lo
ality of Pr�ufer numbers as illustrated in Roth-

�nding this statement.



lauf and Goldberg (1999) and Rothlauf and Goldberg

(2000).

This work analyzed the lo
ality of Pr�ufer numbers by

performing either random walks through the Pr�ufer

number spa
e, or examining the 
omplete neighbor-

hood of an individual. The random walks showed that

the lo
ality of the Pr�ufer number en
oding is very low.

Most of the small 
hanges of the genotype result in a


ompletely di�erent phenotype.

The analysis of the neighborhood of Pr�ufer numbers

answered the question of whether the lo
ality of the

en
oding is low everywhere in the sear
h spa
e. The

investigation revealed that the lo
ality of Pr�ufer num-

bers that represent star networks is perfe
t, whereas

Pr�ufer numbers representing other network stru
tures

have low lo
ality. Genotypi
 neighbors of a Pr�ufer

number representing a list or an arbitrary tree have

on average not mu
h in 
ommon with ea
h other.

To answer the questions of why exa
tly Pr�ufer num-

bers en
oding stars have high lo
ality, and how large

the areas of high lo
ality are, an investigation into the

number of neighbors a Pr�ufer number individual was

performed. The analysis showed that for Pr�ufer num-

bers the number of neighbors is independent from the

represented tree. For phenotypes, however, the num-

ber of neighbors varies with the stru
ture of the tree.

Star networks have as many neighbors as the 
orre-

sponding Pr�ufer numbers, and therefore, the lo
ality

around star networks is high. When modifying stars

towards lists, the number of phenotypi
 neighbors in-


reases whi
h makes it impossible to obtain high lo-


ality for problems other than star networks. Further-

more, Gottlieb, Julstrom, Raidl, and Rothlauf (2001)

showed that the areas of high lo
ality are only of order

O(n


onst

), whereas the whole sear
h spa
e grows with

O(n

n�2

). Thus, the regions of high lo
ality be
ome

very small with in
reasing problem size whi
h redu
es

the performan
e of a GA on larger problems.

Previous work has shown the problems of Pr�ufer num-

bers with low lo
ality. In the following we illustrate the

impa
t of lo
ality on the performan
e of mutation- as

well as re
ombination-based evolutionary sear
h.

4 Performan
e of the Pr�ufer Number

En
oding

In the following se
tion we verify empiri
ally that evo-

lutionary sear
h algorithms using the Pr�ufer number

en
oding fail when sear
hing for good solutions in ar-

eas where the lo
ality is low. We present results for a

GA using only one-point 
rossover, and for simulated

annealing only using mutation. Both algorithms are

applied to the fully easy one-max tree problem.

In the one-max tree problem (Rothlauf, Goldberg, &

Heinzl, 2000), an optimum spanning tree is spe
i�ed

a priori, and the �tness of any tree is the number of

edges that it shares with this target. Therefore, we


an easily investigate how the performan
e of evolu-

tionary sear
h depends on the stru
ture of the target.

Similarly to the one-max problem, the problem should

be easy for mutation-based, and slightly more diÆ
ult

for re
ombination-based, sear
h.

Simulated annealing (SA) 
an be modeled as a GA

with population size 1 and Boltzmann sele
tion (Gold-

berg, 1990; Mahfoud & Goldberg, 1995). In ea
h gen-

eration a 
hild is 
reated by applying one mutation

step to the parent. Therefore, the new individual has

distan
e 1 to its parent. If the 
hild has higher �t-

ness than its parent it repla
es the parent. If it has

lower �tness it repla
es the parent with probability

P (T ) = e

�

f


hild

�f

parent

T

, where f denotes the �tness

of an individual. The a

eptan
e probability P de-

pends on the a
tual temperature T whi
h is redu
ed

during the run a

ording to a 
ooling s
hedule. With

lowering temperature T , the probability of a

epting

worse solutions de
reases. Be
ause the sear
h algo-

rithm uses only mutation, and 
an in 
ontrast to, for

example a (1 + 1) evolution strategy, solve diÆ
ult

multi-modal problems more easily, we use it as a rep-

resentative of mutation based evolutionary sear
h al-

gorithms. For further information about simulated

annealing the reader is referred to other work (van

Laarhoven & Aarts, 1988; Davis, 1987).

In �gure 1 we present results for a GA with �+� sele
-

tion using one-point 
rossover and no mutation on 16

and 32 node one-max tree problems. The stru
ture of

the optimal solution is determined to be either a star,

random list, ordered list, or an arbitrary tree. For

the 16 node problems we 
hose � = � = 400, and for

the 32 node problems � = � = 1500. We performed

250 runs and ea
h run was stopped after the popu-

lation was fully 
onverged. Figure 2 presents results

for using simulated annealing. The start temperature

T

start

= 100 is redu
ed in every step by the fa
tor

0.99. Therefore, T

t+1

= 0:99 � T

t

. Mutation is de�ned

to randomly 
hange one digit of the Pr�ufer number.

We performed 250 runs and ea
h run was stopped af-

ter 5000 mutation steps.

The results in �gure 1 and 2 show that if the opti-

mal solution is a randomly 
hosen star network, both

sear
h algorithms, the re
ombination-based GA and

the mutation-based SA are able to �nd the optimal

star easily. A sear
h near star networks is really a
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Figure 1: The performan
e of a geneti
 algorithm for a

16 (top) and 32 (bottom) node one-max tree problem.

The plots show the �tness of the best individual over

the run. The stru
ture of the best solutions has a

large in
uen
e on the performan
e of the GA. If the

best solution is a star, the GA performs well. If the

GA has to �nd a best solution that is a list or a tree, it

degrades and 
annot solve the easy one-max problem.
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Figure 2: The performan
e of simulated annealing for

a 16 (top) and 32 (bottom) node one-max tree prob-

lem. The plots show the �tness over the run. As for

re
ombination-based approa
hes, the mutation-based

simulated annealing fails if the best solution is not a

star.



guided sear
h and both algorithms are able to �nd

their way to the optimum. However, if the optimal

solution is a random list, an ordered list, or an arbi-

trary tree, the GA 
an never �nd the optimal solution

and is 
ompletely misled. Exploring the neighborhood

around an individual in an area of low lo
ality results

in a blind and random sear
h. Individuals that are 
re-

ated by mutation of one individual, or by the re
om-

bination of two individuals, have nothing in 
ommon

with their parent(s).

The results show that good solutions 
an not be found

if they lie in areas of low lo
ality. A degradation of

the evolutionary sear
h pro
ess is unavoidable. Evolu-

tionary sear
h using the Pr�ufer number en
oding 
ould

only work properly if the good solutions are stars.

Near stars the lo
ality is high and a guided sear
h

is possible. Furthermore, the empiri
al results illus-

trate ni
ely that high lo
ality is a ne
essary 
ondi-

tion for mutation and re
ombination based evolution-

ary sear
h. If the lo
ality of an en
oding is low, even

very simple problems like the one-max tree problem

be
ome very diÆ
ult and 
an not be solved any more.

The presented empiri
al results shine some light on

the 
ontroversial statements about the performan
e of

Pr�ufer numbers in the 
ontext of evolutionary sear
h.

Resear
hers who investigate problems in whi
h good

solutions are star-like see a

eptable results and favor

the use of Pr�ufer numbers. Other resear
hers with

non-star-like optimal solutions, however, observe a low

performan
e and advise not to use the en
oding.

5 Summary and Con
lusions

This paper gave an explanation for the 
ontrover-

sial statements about the performan
e of evolutionary

sear
h when using Pr�ufer numbers for en
oding trees.

We started with a histori
al review of the 
ontroversial

statements about Pr�ufer number performan
e. This

was followed by reviewing earlier work about the low

lo
ality of the Pr�ufer number en
oding. Finally, we

presented empiri
al results about the performan
e of a

mutation-based simulated annealing and a re
ombina-

tion based GA optimizing the one-max tree problem.

The histori
al review showed that there has been a

large in
rease in interest in the Pr�ufer number en
od-

ing over the last two years. However, the suitability

of Pr�ufer numbers for en
oding network problems is

strong disputed as some resear
hers report good re-

sults, whereas others report failure. Previous work re-

ported that the lo
ality of the Pr�ufer number en
oding

depends on the stru
ture of the represented network.

The lo
ality of the Pr�ufer number is high as long as

a star-like stru
ture is represented, and is low every-

where else. Interpreting these results we 
an shed light

on the 
ontroversial statements about the performan
e

of GAs using Pr�ufer numbers. Resear
hers who inves-

tigate problems in whi
h good solution are star-like see

a

eptable results and favor the use of Pr�ufer numbers.

Other resear
hers with non-star like optimal solutions,

however, observe low performan
e and advise not to

use the en
oding.

Furthermore, the belief that low lo
ality only hurts

mutation, but not re
ombination-based geneti
 sear
h,

does not hold true. The empiri
al results show

that lo
ality is ne
essary for mutation- as well as

re
ombination-based evolutionary sear
h.

A robust, widely usable en
oding should allow a GA

to perform independently of the stru
ture of the repre-

sented network. Our investigation showed that Pr�ufer

numbers are not robust. Only if the good solutions are

star-like 
an evolutionary sear
h using Pr�ufer numbers

perform well. Therefore, resear
hers should be 
areful

when using Pr�ufer numbers on problems of unknown


omplexity. In general, geneti
 and evolutionary algo-

rithms fail.
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