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Abstrat

This paper sheds some light on the debate

onerning evolutionary searh using Pr�ufer

numbers, and explains some of the ontrover-

sial results. Previous work has shown that

Pr�ufer numbers have low loality. Further-

more, it has been shown elsewhere that the

loality of the Pr�ufer number depends on the

struture of the enoded tree. The loality of

a Pr�ufer number is high if it enodes a star

network, and low elsewhere. The paper illus-

trates that when applying mutation- as well

as reombination-based geneti searh to the

one-max tree problem, whih allows to hoose

the struture of the optimal solution a priori,

that both types of evolutionary searh fail if

the optimal solution is not star-like.

Therefore, the performane of evolutionary

searh depends on the struture of the opti-

mal solution. If the high quality solutions are

star-like, researhers see a good performane,

whereas for other types of networks a failure

is inesapable. Therefore, researhers are ad-

vised not to use Pr�ufer numbers on problems

of unknown omplexity beause the enoding

is not robust and its performane depends on

the struture of the optimal solution.

1 Introdution

Pr�ufer numbers are a widely used representation for

trees. However, the performane of geneti and evo-

lutionary algorithms using Pr�ufer numbers is strongly

disputed.
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This paper gives an explanation for the ontroversial

statements about the performane of Pr�ufer numbers

and explains why some researhers report high, and

others report low, performane. We know from earlier

work (Rothlauf & Goldberg, 1999) that the loality of

Pr�ufer numbers is high only when enoding star net-

works. Therefore, mutation-, as well as reombination-

based geneti searh using Pr�ufer numbers, only per-

forms well if the optimal solutions are star-like. For

other types of networks a failure is inesapable. As a

result, researhers who use Pr�ufer numbers for prob-

lems where the optimal solution is star-like see a well

performing GA, whereas others who use Pr�ufer num-

bers for �nding non-star-like trees report a failure.

The paper starts with a historial review of the on-

troversial debate about the use of the Pr�ufer number

enoding in the ontext of geneti and evolutionary

searh. In setion 3 we briey review the results about

the low loality of Pr�ufer numbers from Rothlauf and

Goldberg (1999). Finally, we present empirial results

for the performane of a mutation-based simulated an-

nealing, and a reombination-based GA, when solving

the one-max tree problem. The paper ends with on-

luding remarks.

2 Historial Review

The following setion presents a review about the on-

troversial debate onerning the performane of Pr�ufer

numbers.

Cayley (1889), identi�ed the number of distint span-

ning trees on a omplete graph with n nodes as n

n�2

(Even, 1973, pp. 103-104). Later, this theorem was

proven very elegantly by Pr�ufer (1918) using the intro-

dution of a one-to-one orrespondene between span-

ning trees and a string of length n � 2 over an al-

phabet of n symbols. This string is denoted as the

Pr�ufer number, and the genotype-phenotype mapping



is the Pr�ufer number enoding. It is possible to derive

a unique tree with n nodes from the Pr�ufer number of

length n� 2 and vie versa (Even, 1973, pp. 104-106).

Later, in the ontext of geneti and evolutionary algo-

rithms, several researhers used the enoding for the

representation of trees. Palmer used the enoding in

his thesis at the beginning of the nineties (Palmer,

1994; Palmer & Kershenbaum, 1994a; Palmer & Ker-

shenbaum, 1994b), and ompared the performane of

the Pr�ufer numbers with some other representations

for the optimal ommuniation spanning tree problem.

However, he noted that the Pr�ufer number enoding

has a low loality and is therefore not a good hoie

for enoding trees. The low performane of the enod-

ing was on�rmed by Julstrom (1993) who used Pr�ufer

numbers for the retilinear steiner problem, and also

observed a low GA performane.

About the same time, Abuali et al. (1994) used Pr�ufer

numbers for the optimization of probabilisti minimum

spanning trees (PMST) with geneti algorithms. The

investigation foused more on the inuene of di�erent

operators than on the performane of Pr�ufer numbers.

However, at the end of the work, the onlusion was

drawn that in ontrast to Palmer and Julstrom, Pr�ufer

numbers \lead to a natural GA enoding of the PMST

problem" (Abuali et al., 1994, p. 245). Some years

later similar results were reported by Zhou and Gen

(1997) who suessfully used the Pr�ufer enoding for

a degree onstraint minimum spanning tree problem.

The degree onstraint was onsidered by repairing in-

valid solutions that violate the degree onstraints. Kr-

ishnamoorthy et al. (1999) ompared two other ver-

sions of geneti algorithms that use Pr�ufer numbers.

They reported a few good results for a GA ompletely

removing invalid solutions from the population. Fur-

thermore, Pr�ufer numbers were used for spanning tree

problems (Gen, Zhou, & Takayama, 1998; Gen, Ida, &

Kim, 1998), the time-dependent minimum spanning

tree problem (Gargano, Edelson, & Koval, 1998), the

�xed-harge transportation problem (Li, Gen, & Ida,

1998) and a biriteria version of it (Gen & Li, 1999),

and a multi-objetive network design problem (Kim &

Gen, 1999). Most of this work reported good results

when using Pr�ufer numbers, and label the enoding to

be (very) suitable for enoding spanning trees. As an

example of positive results we want to ite Kim and

Gen (1999) who wrote:

The Pr�ufer number is very suitable for enoding

a spanning tree, espeially in some researh �elds,

suh as transportation problems, minimum span-

ning problems, and so on.
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However, other relevant work by Krishnamoorthy

et al. (1999), who used Pr�ufer numbers for the de-

gree onstraint spanning tree problem, from Julstrom

(2000) who ompared a list of edges enoding with

Pr�ufer numbers, or from Gottlieb and Ekert (2000)

who used Pr�ufer numbers for the �xed harge trans-

portation problem showed that Pr�ufer numbers result

in a low GA performane. A summarizing study by

Gottlieb, Julstrom, Raidl, and Rothlauf (2001) om-

pared the performane of Pr�ufer numbers for four dif-

ferent network problems and onluded that Pr�ufer

numbers often perform worse than other enodings,

and are not suitable for enoding trees.

To explain the di�erenes between the good and bad

results obtained by GAs using Pr�ufer numbers, Roth-

lauf and Goldberg (1999) investigated the loality of

the enoding more losely. It was shown that Pr�ufer

numbers have high loality if they enode star net-

works. For all other types of trees, the loality is low

whih leads to a degradation of a GA (see also Roth-

lauf and Goldberg (2000)). Therefore, the di�erenes

in performane ould be well explained when assum-

ing that the performane of the GA depends on the

struture of the optimal solution. Researhers who re-

port good solutions often used very small problems,

or problems where the optimal solution is more star-

like and therefore easy to �nd for GAs. However,

when using Pr�ufer numbers for more general problems,

a strong derease in GA performane is inesapable.

These results were on�rmed by Gottlieb and Raidl

(2000) who investigated the e�ets of loality on the

dynamis of evolutionary searh.

We have seen that the performane of geneti algo-

rithms using Pr�ufer numbers is a strongly disussed

topi. Some researhers report good results and favor

the use of Pr�ufer numbers. Other researhers, how-

ever, point to the low loality of the enoding, report

worse results and advise us not to use Pr�ufer numbers.

A loser investigation into how loality depends on the

struture of the tree ould solve these ontraditory re-

sults. As the work from Rothlauf and Goldberg (2000)

indiates that the loality of Pr�ufer numbers strongly

depends on the struture of the tree, we expet GAs

to show good results if the good solutions are star-like,

and worse results for all other types.

3 The Low Loality of the Pr�ufer

Number Enoding

In this setion we briey review the results onerning

the loality of Pr�ufer numbers as illustrated in Roth-

�nding this statement.



lauf and Goldberg (1999) and Rothlauf and Goldberg

(2000).

This work analyzed the loality of Pr�ufer numbers by

performing either random walks through the Pr�ufer

number spae, or examining the omplete neighbor-

hood of an individual. The random walks showed that

the loality of the Pr�ufer number enoding is very low.

Most of the small hanges of the genotype result in a

ompletely di�erent phenotype.

The analysis of the neighborhood of Pr�ufer numbers

answered the question of whether the loality of the

enoding is low everywhere in the searh spae. The

investigation revealed that the loality of Pr�ufer num-

bers that represent star networks is perfet, whereas

Pr�ufer numbers representing other network strutures

have low loality. Genotypi neighbors of a Pr�ufer

number representing a list or an arbitrary tree have

on average not muh in ommon with eah other.

To answer the questions of why exatly Pr�ufer num-

bers enoding stars have high loality, and how large

the areas of high loality are, an investigation into the

number of neighbors a Pr�ufer number individual was

performed. The analysis showed that for Pr�ufer num-

bers the number of neighbors is independent from the

represented tree. For phenotypes, however, the num-

ber of neighbors varies with the struture of the tree.

Star networks have as many neighbors as the orre-

sponding Pr�ufer numbers, and therefore, the loality

around star networks is high. When modifying stars

towards lists, the number of phenotypi neighbors in-

reases whih makes it impossible to obtain high lo-

ality for problems other than star networks. Further-

more, Gottlieb, Julstrom, Raidl, and Rothlauf (2001)

showed that the areas of high loality are only of order

O(n

onst

), whereas the whole searh spae grows with

O(n

n�2

). Thus, the regions of high loality beome

very small with inreasing problem size whih redues

the performane of a GA on larger problems.

Previous work has shown the problems of Pr�ufer num-

bers with low loality. In the following we illustrate the

impat of loality on the performane of mutation- as

well as reombination-based evolutionary searh.

4 Performane of the Pr�ufer Number

Enoding

In the following setion we verify empirially that evo-

lutionary searh algorithms using the Pr�ufer number

enoding fail when searhing for good solutions in ar-

eas where the loality is low. We present results for a

GA using only one-point rossover, and for simulated

annealing only using mutation. Both algorithms are

applied to the fully easy one-max tree problem.

In the one-max tree problem (Rothlauf, Goldberg, &

Heinzl, 2000), an optimum spanning tree is spei�ed

a priori, and the �tness of any tree is the number of

edges that it shares with this target. Therefore, we

an easily investigate how the performane of evolu-

tionary searh depends on the struture of the target.

Similarly to the one-max problem, the problem should

be easy for mutation-based, and slightly more diÆult

for reombination-based, searh.

Simulated annealing (SA) an be modeled as a GA

with population size 1 and Boltzmann seletion (Gold-

berg, 1990; Mahfoud & Goldberg, 1995). In eah gen-

eration a hild is reated by applying one mutation

step to the parent. Therefore, the new individual has

distane 1 to its parent. If the hild has higher �t-

ness than its parent it replaes the parent. If it has

lower �tness it replaes the parent with probability

P (T ) = e

�

f

hild

�f

parent

T

, where f denotes the �tness

of an individual. The aeptane probability P de-

pends on the atual temperature T whih is redued

during the run aording to a ooling shedule. With

lowering temperature T , the probability of aepting

worse solutions dereases. Beause the searh algo-

rithm uses only mutation, and an in ontrast to, for

example a (1 + 1) evolution strategy, solve diÆult

multi-modal problems more easily, we use it as a rep-

resentative of mutation based evolutionary searh al-

gorithms. For further information about simulated

annealing the reader is referred to other work (van

Laarhoven & Aarts, 1988; Davis, 1987).

In �gure 1 we present results for a GA with �+� sele-

tion using one-point rossover and no mutation on 16

and 32 node one-max tree problems. The struture of

the optimal solution is determined to be either a star,

random list, ordered list, or an arbitrary tree. For

the 16 node problems we hose � = � = 400, and for

the 32 node problems � = � = 1500. We performed

250 runs and eah run was stopped after the popu-

lation was fully onverged. Figure 2 presents results

for using simulated annealing. The start temperature

T

start

= 100 is redued in every step by the fator

0.99. Therefore, T

t+1

= 0:99 � T

t

. Mutation is de�ned

to randomly hange one digit of the Pr�ufer number.

We performed 250 runs and eah run was stopped af-

ter 5000 mutation steps.

The results in �gure 1 and 2 show that if the opti-

mal solution is a randomly hosen star network, both

searh algorithms, the reombination-based GA and

the mutation-based SA are able to �nd the optimal

star easily. A searh near star networks is really a
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Figure 1: The performane of a geneti algorithm for a

16 (top) and 32 (bottom) node one-max tree problem.

The plots show the �tness of the best individual over

the run. The struture of the best solutions has a

large inuene on the performane of the GA. If the

best solution is a star, the GA performs well. If the

GA has to �nd a best solution that is a list or a tree, it

degrades and annot solve the easy one-max problem.
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Figure 2: The performane of simulated annealing for

a 16 (top) and 32 (bottom) node one-max tree prob-

lem. The plots show the �tness over the run. As for

reombination-based approahes, the mutation-based

simulated annealing fails if the best solution is not a

star.



guided searh and both algorithms are able to �nd

their way to the optimum. However, if the optimal

solution is a random list, an ordered list, or an arbi-

trary tree, the GA an never �nd the optimal solution

and is ompletely misled. Exploring the neighborhood

around an individual in an area of low loality results

in a blind and random searh. Individuals that are re-

ated by mutation of one individual, or by the reom-

bination of two individuals, have nothing in ommon

with their parent(s).

The results show that good solutions an not be found

if they lie in areas of low loality. A degradation of

the evolutionary searh proess is unavoidable. Evolu-

tionary searh using the Pr�ufer number enoding ould

only work properly if the good solutions are stars.

Near stars the loality is high and a guided searh

is possible. Furthermore, the empirial results illus-

trate niely that high loality is a neessary ondi-

tion for mutation and reombination based evolution-

ary searh. If the loality of an enoding is low, even

very simple problems like the one-max tree problem

beome very diÆult and an not be solved any more.

The presented empirial results shine some light on

the ontroversial statements about the performane of

Pr�ufer numbers in the ontext of evolutionary searh.

Researhers who investigate problems in whih good

solutions are star-like see aeptable results and favor

the use of Pr�ufer numbers. Other researhers with

non-star-like optimal solutions, however, observe a low

performane and advise not to use the enoding.

5 Summary and Conlusions

This paper gave an explanation for the ontrover-

sial statements about the performane of evolutionary

searh when using Pr�ufer numbers for enoding trees.

We started with a historial review of the ontroversial

statements about Pr�ufer number performane. This

was followed by reviewing earlier work about the low

loality of the Pr�ufer number enoding. Finally, we

presented empirial results about the performane of a

mutation-based simulated annealing and a reombina-

tion based GA optimizing the one-max tree problem.

The historial review showed that there has been a

large inrease in interest in the Pr�ufer number enod-

ing over the last two years. However, the suitability

of Pr�ufer numbers for enoding network problems is

strong disputed as some researhers report good re-

sults, whereas others report failure. Previous work re-

ported that the loality of the Pr�ufer number enoding

depends on the struture of the represented network.

The loality of the Pr�ufer number is high as long as

a star-like struture is represented, and is low every-

where else. Interpreting these results we an shed light

on the ontroversial statements about the performane

of GAs using Pr�ufer numbers. Researhers who inves-

tigate problems in whih good solution are star-like see

aeptable results and favor the use of Pr�ufer numbers.

Other researhers with non-star like optimal solutions,

however, observe low performane and advise not to

use the enoding.

Furthermore, the belief that low loality only hurts

mutation, but not reombination-based geneti searh,

does not hold true. The empirial results show

that loality is neessary for mutation- as well as

reombination-based evolutionary searh.

A robust, widely usable enoding should allow a GA

to perform independently of the struture of the repre-

sented network. Our investigation showed that Pr�ufer

numbers are not robust. Only if the good solutions are

star-like an evolutionary searh using Pr�ufer numbers

perform well. Therefore, researhers should be areful

when using Pr�ufer numbers on problems of unknown

omplexity. In general, geneti and evolutionary algo-

rithms fail.
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