On the Debate Concerning Evolutionary Search using Priifer
Numbers

Franz Rothlauf*

David E. Goldberg

Armin Heinzl

Dept. of Information Systems Illinois Genetic Algorithms Laboratory Dept. of Information Systems

University of Bayreuth  University of Illinois at Urbana-Champaign
117 Transportation Building

Universitaetsstr. 30

University of Bayreuth
Universitaetsstr. 30

D-95440 Bayreuth/Germany 104 S. Mathews Av. Urbana, IL 61801 D-95440 Bayreuth/Germany

rothlauf@uni-bayreuth.de

Abstract

This paper sheds some light on the debate
concerning evolutionary search using Priifer
numbers, and explains some of the controver-
sial results. Previous work has shown that
Priifer numbers have low locality. Further-
more, it has been shown elsewhere that the
locality of the Priifer number depends on the
structure of the encoded tree. The locality of
a Priifer number is high if it encodes a star
network, and low elsewhere. The paper illus-
trates that when applying mutation- as well
as recombination-based genetic search to the
one-max tree problem, which allows to choose
the structure of the optimal solution a priori,
that both types of evolutionary search fail if
the optimal solution is not star-like.

Therefore, the performance of evolutionary
search depends on the structure of the opti-
mal solution. If the high quality solutions are
star-like, researchers see a good performance,
whereas for other types of networks a failure
is inescapable. Therefore, researchers are ad-
vised not to use Priifer numbers on problems
of unknown complexity because the encoding
is not robust and its performance depends on
the structure of the optimal solution.

1 Introduction

Priifer numbers are a widely used representation for
trees. However, the performance of genetic and evo-
lutionary algorithms using Priifer numbers is strongly
disputed.
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This paper gives an explanation for the controversial
statements about the performance of Priifer numbers
and explains why some researchers report high, and
others report low, performance. We know from earlier
work (Rothlauf & Goldberg, 1999) that the locality of
Priifer numbers is high only when encoding star net-
works. Therefore, mutation-, as well as recombination-
based genetic search using Priifer numbers, only per-
forms well if the optimal solutions are star-like. For
other types of networks a failure is inescapable. As a
result, researchers who use Priifer numbers for prob-
lems where the optimal solution is star-like see a well
performing GA, whereas others who use Priifer num-
bers for finding non-star-like trees report a failure.

The paper starts with a historical review of the con-
troversial debate about the use of the Priifer number
encoding in the context of genetic and evolutionary
search. In section 3 we briefly review the results about
the low locality of Priifer numbers from Rothlauf and
Goldberg (1999). Finally, we present empirical results
for the performance of a mutation-based simulated an-
nealing, and a recombination-based GA, when solving
the one-max tree problem. The paper ends with con-
cluding remarks.

2 Historical Review

The following section presents a review about the con-
troversial debate concerning the performance of Priifer
numbers.

Cayley (1889), identified the number of distinct span-
ning trees on a complete graph with n nodes as n"~2
(Even, 1973, pp. 103-104). Later, this theorem was
proven very elegantly by Priifer (1918) using the intro-
duction of a one-to-one correspondence between span-
ning trees and a string of length n — 2 over an al-
phabet of n symbols. This string is denoted as the
Priifer number, and the genotype-phenotype mapping



is the Priifer number encoding. It is possible to derive
a unique tree with n nodes from the Priifer number of
length n — 2 and vice versa (Even, 1973, pp. 104-106).

Later, in the context of genetic and evolutionary algo-
rithms, several researchers used the encoding for the
representation of trees. Palmer used the encoding in
his thesis at the beginning of the nineties (Palmer,
1994; Palmer & Kershenbaum, 1994a; Palmer & Ker-
shenbaum, 1994b), and compared the performance of
the Priifer numbers with some other representations
for the optimal communication spanning tree problem.
However, he noted that the Priifer number encoding
has a low locality and is therefore not a good choice
for encoding trees. The low performance of the encod-
ing was confirmed by Julstrom (1993) who used Priifer
numbers for the rectilinear steiner problem, and also
observed a low GA performance.

About the same time, Abuali et al. (1994) used Priifer
numbers for the optimization of probabilistic minimum
spanning trees (PMST) with genetic algorithms. The
investigation focused more on the influence of different
operators than on the performance of Priifer numbers.
However, at the end of the work, the conclusion was
drawn that in contrast to Palmer and Julstrom, Priifer
numbers “lead to a natural GA encoding of the PMST
problem” (Abuali et al., 1994, p. 245). Some years
later similar results were reported by Zhou and Gen
(1997) who successfully used the Priifer encoding for
a degree constraint minimum spanning tree problem.
The degree constraint was considered by repairing in-
valid solutions that violate the degree constraints. Kr-
ishnamoorthy et al. (1999) compared two other ver-
sions of genetic algorithms that use Priifer numbers.
They reported a few good results for a GA completely
removing invalid solutions from the population. Fur-
thermore, Priifer numbers were used for spanning tree
problems (Gen, Zhou, & Takayama, 1998; Gen, Ida, &
Kim, 1998), the time-dependent minimum spanning
tree problem (Gargano, Edelson, & Koval, 1998), the
fixed-charge transportation problem (Li, Gen, & Ida,
1998) and a bicriteria version of it (Gen & Li, 1999),
and a multi-objective network design problem (Kim &
Gen, 1999). Most of this work reported good results
when using Priifer numbers, and label the encoding to
be (very) suitable for encoding spanning trees. As an
example of positive results we want to cite Kim and
Gen (1999) who wrote:

The Priifer number is very suitable for encoding
a spanning tree, especially in some research fields,
such as transportation problems, minimum span-
ning problems, and so on.'

!Special thanks to Bryant A. Julstrom for his help with

However, other relevant work by Krishnamoorthy
et al. (1999), who used Priifer numbers for the de-
gree constraint spanning tree problem, from Julstrom
(2000) who compared a list of edges encoding with
Priifer numbers, or from Gottlieb and Eckert (2000)
who used Priifer numbers for the fixed charge trans-
portation problem showed that Priifer numbers result
in a low GA performance. A summarizing study by
Gottlieb, Julstrom, Raidl, and Rothlauf (2001) com-
pared the performance of Priifer numbers for four dif-
ferent network problems and concluded that Priifer
numbers often perform worse than other encodings,
and are not suitable for encoding trees.

To explain the differences between the good and bad
results obtained by GAs using Priifer numbers, Roth-
lauf and Goldberg (1999) investigated the locality of
the encoding more closely. It was shown that Priifer
numbers have high locality if they encode star net-
works. For all other types of trees, the locality is low
which leads to a degradation of a GA (see also Roth-
lauf and Goldberg (2000)). Therefore, the differences
in performance could be well explained when assum-
ing that the performance of the GA depends on the
structure of the optimal solution. Researchers who re-
port good solutions often used very small problems,
or problems where the optimal solution is more star-
like and therefore easy to find for GAs. However,
when using Priifer numbers for more general problems,
a strong decrease in GA performance is inescapable.
These results were confirmed by Gottlieb and Raidl
(2000) who investigated the effects of locality on the
dynamics of evolutionary search.

We have seen that the performance of genetic algo-
rithms using Priifer numbers is a strongly discussed
topic. Some researchers report good results and favor
the use of Priifer numbers. Other researchers, how-
ever, point to the low locality of the encoding, report
worse results and advise us not to use Priifer numbers.
A closer investigation into how locality depends on the
structure of the tree could solve these contradictory re-
sults. As the work from Rothlauf and Goldberg (2000)
indicates that the locality of Priifer numbers strongly
depends on the structure of the tree, we expect GAs
to show good results if the good solutions are star-like,
and worse results for all other types.

3 The Low Locality of the Priifer
Number Encoding

In this section we briefly review the results concerning
the locality of Priifer numbers as illustrated in Roth-

finding this statement.



lauf and Goldberg (1999) and Rothlauf and Goldberg
(2000).

This work analyzed the locality of Priifer numbers by
performing either random walks through the Priifer
number space, or examining the complete neighbor-
hood of an individual. The random walks showed that
the locality of the Priifer number encoding is very low.
Most of the small changes of the genotype result in a
completely different phenotype.

The analysis of the neighborhood of Priifer numbers
answered the question of whether the locality of the
encoding is low everywhere in the search space. The
investigation revealed that the locality of Priifer num-
bers that represent star networks is perfect, whereas
Priifer numbers representing other network structures
have low locality. Genotypic neighbors of a Priifer
number representing a list or an arbitrary tree have
on average not much in common with each other.

To answer the questions of why exactly Priifer num-
bers encoding stars have high locality, and how large
the areas of high locality are, an investigation into the
number of neighbors a Priifer number individual was
performed. The analysis showed that for Priifer num-
bers the number of neighbors is independent from the
represented tree. For phenotypes, however, the num-
ber of neighbors varies with the structure of the tree.
Star networks have as many neighbors as the corre-
sponding Priifer numbers, and therefore, the locality
around star networks is high. When modifying stars
towards lists, the number of phenotypic neighbors in-
creases which makes it impossible to obtain high lo-
cality for problems other than star networks. Further-
more, Gottlieb, Julstrom, Raidl, and Rothlauf (2001)
showed that the areas of high locality are only of order
O(nc°mst) | whereas the whole search space grows with
O(n™%). Thus, the regions of high locality become
very small with increasing problem size which reduces
the performance of a GA on larger problems.

Previous work has shown the problems of Priifer num-
bers with low locality. In the following we illustrate the
impact of locality on the performance of mutation- as
well as recombination-based evolutionary search.

4 Performance of the Priifer Number
Encoding

In the following section we verify empirically that evo-
lutionary search algorithms using the Priifer number
encoding fail when searching for good solutions in ar-
eas where the locality is low. We present results for a
GA using only one-point crossover, and for simulated

annealing only using mutation. Both algorithms are
applied to the fully easy one-max tree problem.

In the one-max tree problem (Rothlauf, Goldberg, &
Heinzl, 2000), an optimum spanning tree is specified
a priori, and the fitness of any tree is the number of
edges that it shares with this target. Therefore, we
can easily investigate how the performance of evolu-
tionary search depends on the structure of the target.
Similarly to the one-max problem, the problem should
be easy for mutation-based, and slightly more difficult
for recombination-based, search.

Simulated annealing (SA) can be modeled as a GA
with population size 1 and Boltzmann selection (Gold-
berg, 1990; Mahfoud & Goldberg, 1995). In each gen-
eration a child is created by applying one mutation
step to the parent. Therefore, the new individual has
distance 1 to its parent. If the child has higher fit-
ness than its parent it replaces the parent. If it has
lower fitness it replaces the parent with probability

P(T) = e’w, where f denotes the fitness
of an individual. The acceptance probability P de-
pends on the actual temperature T" which is reduced
during the run according to a cooling schedule. With
lowering temperature 7', the probability of accepting
worse solutions decreases. Because the search algo-
rithm uses only mutation, and can in contrast to, for
example a (1 + 1) evolution strategy, solve difficult
multi-modal problems more easily, we use it as a rep-
resentative of mutation based evolutionary search al-
gorithms. For further information about simulated
annealing the reader is referred to other work (van
Laarhoven & Aarts, 1988; Davis, 1987).

In figure 1 we present results for a GA with p+ A selec-
tion using one-point crossover and no mutation on 16
and 32 node one-max tree problems. The structure of
the optimal solution is determined to be either a star,
random list, ordered list, or an arbitrary tree. For
the 16 node problems we chose u = A = 400, and for
the 32 node problems u = A = 1500. We performed
250 runs and each run was stopped after the popu-
lation was fully converged. Figure 2 presents results
for using simulated annealing. The start temperature
Tstart = 100 is reduced in every step by the factor
0.99. Therefore, Ty+1 = 0.99 % T;. Mutation is defined
to randomly change one digit of the Priifer number.
We performed 250 runs and each run was stopped af-
ter 5000 mutation steps.

The results in figure 1 and 2 show that if the opti-
mal solution is a randomly chosen star network, both
search algorithms, the recombination-based GA and
the mutation-based SA are able to find the optimal
star easily. A search near star networks is really a
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Figure 1: The performance of a genetic algorithm for a
16 (top) and 32 (bottom) node one-max tree problem.
The plots show the fitness of the best individual over
the run. The structure of the best solutions has a
large influence on the performance of the GA. If the
best solution is a star, the GA performs well. If the
GA has to find a best solution that is a list or a tree, it
degrades and cannot solve the easy one-max problem.
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Figure 2: The performance of simulated annealing for
a 16 (top) and 32 (bottom) node one-max tree prob-
lem. The plots show the fitness over the run. As for
recombination-based approaches, the mutation-based
simulated annealing fails if the best solution is not a
star.



guided search and both algorithms are able to find
their way to the optimum. However, if the optimal
solution is a random list, an ordered list, or an arbi-
trary tree, the GA can never find the optimal solution
and is completely misled. Exploring the neighborhood
around an individual in an area of low locality results
in a blind and random search. Individuals that are cre-
ated by mutation of one individual, or by the recom-
bination of two individuals, have nothing in common
with their parent(s).

The results show that good solutions can not be found
if they lie in areas of low locality. A degradation of
the evolutionary search process is unavoidable. Evolu-
tionary search using the Priifer number encoding could
only work properly if the good solutions are stars.
Near stars the locality is high and a guided search
is possible. Furthermore, the empirical results illus-
trate nicely that high locality is a necessary condi-
tion for mutation and recombination based evolution-
ary search. If the locality of an encoding is low, even
very simple problems like the one-max tree problem
become very difficult and can not be solved any more.

The presented empirical results shine some light on
the controversial statements about the performance of
Priifer numbers in the context of evolutionary search.
Researchers who investigate problems in which good
solutions are star-like see acceptable results and favor
the use of Priifer numbers. Other researchers with
non-star-like optimal solutions, however, observe a low
performance and advise not to use the encoding.

5 Summary and Conclusions

This paper gave an explanation for the controver-
sial statements about the performance of evolutionary
search when using Priifer numbers for encoding trees.
We started with a historical review of the controversial
statements about Priifer number performance. This
was followed by reviewing earlier work about the low
locality of the Priifer number encoding. Finally, we
presented empirical results about the performance of a
mutation-based simulated annealing and a recombina-
tion based GA optimizing the one-max tree problem.

The historical review showed that there has been a
large increase in interest in the Priifer number encod-
ing over the last two years. However, the suitability
of Priifer numbers for encoding network problems is
strong disputed as some researchers report good re-
sults, whereas others report failure. Previous work re-
ported that the locality of the Priifer number encoding
depends on the structure of the represented network.
The locality of the Priifer number is high as long as

a star-like structure is represented, and is low every-
where else. Interpreting these results we can shed light
on the controversial statements about the performance
of GAs using Priifer numbers. Researchers who inves-
tigate problems in which good solution are star-like see
acceptable results and favor the use of Priifer numbers.
Other researchers with non-star like optimal solutions,
however, observe low performance and advise not to
use the encoding.

Furthermore, the belief that low locality only hurts
mutation, but not recombination-based genetic search,
does not hold true. The empirical results show
that locality is necessary for mutation- as well as
recombination-based evolutionary search.

A robust, widely usable encoding should allow a GA
to perform independently of the structure of the repre-
sented network. Our investigation showed that Priifer
numbers are not robust. Only if the good solutions are
star-like can evolutionary search using Priifer numbers
perform well. Therefore, researchers should be careful
when using Priifer numbers on problems of unknown
complexity. In general, genetic and evolutionary algo-
rithms fail.
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