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Abstract. When using representations for genetic algorithms (GAs) ev-
ery optimization problem can be separated into a genotype-phenotype
and a phenotype-fitness mapping. The genotype-phenotype mapping is
the used representation and the phenotype-fitness mapping is the prob-
lem that should be solved.

This paper investigates how the use of different binary representations
of integers influences the performance of selectorecombinative GAs using
only crossover and no mutation. It is illustrated that the used represen-
tation strongly influences the performance of GAs. The binary and Gray
encoding are two examples for assigning bitstring genotypes to integer
phenotypes. Focusing the investigation on these two encodings reveals
that for the easy integer one-max problem selectorecombinative GAs
perform better using binary encoding than using Gray encoding. This is
surprising as binary encoding is affected with problems due to the Ham-
ming cliff and because there are proofs that show the superiority of Gray
encoding. However, the performance of selectorecombinative GAs using
binary representations of integers is determined by the resulting build-
ing blocks and not by the structure of the search space resulting from
the Hamming distances between the individuals. Therefore, the perfor-
mance difference between the encodings can be explained by analyzing
the fitness of the resulting schemata.

1 Introduction

Integer optimization problems are important in many real-world applications.
We know from previous work (Liepins & Vose, 1990; Rothlauf, 2001) that the
choice of a proper representation (genotype-phenotype mapping) is crucial for
the performance of genetic and evolutionary algorithms (GEAs). When solving
integer problems, binary representations of integers like Gray or binary encoding
are often used.

In this work we want to investigate how binary representations of integers in-
fluence the performance of selectorecombinative genetic algorithms (GAs) which
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only use crossover and selection and no mutation. The results show large differ-
ences in GA performance using different binary representations. Furthermore, we
see that selectorecombinative GAs perform better using binary encoding than us-
ing Gray encoding. This behavior of selectorecombinative GAs can be explained
by analyzing the fitness of the resulting schemata.

The paper is structured as follows. In the following section we provide the
basis and requisites for our investigations. Section 3 examines how different types
of binary representations of integers influence the performance of selectorecom-
binative GAs. We calculate the number of possible representations and present
empirical results. In section 4 we focus on the influence of binary and Gray en-
coding on GA performance. To explain the experimental results presented in
subsection 4.1 we analyze in subsection 4.2 the fitness of the resulting schemata
for one specific problem. The paper ends with concluding remarks.

2 Binary Representations for Integer Optimization
Problems

We present in subsection 2.2 the integer optimization problem we want to solve,
and in subsection 2.3 binary representations of integers.

2.1 Separating Representations from Optimization Problems

The following subsection provides some basic definitions for our discussion of
representations. When using some kind of representation, every optimization
problem can be decomposed into a genotype-phenotype mapping f,, and a
phenotype-fitness mapping f, (Liepins & Vose, 1990).

We define ¢, as the genotypic search space where the genetic operators such
as recombination or mutation are applied to. An optimization problem on &,
could be formulated as follows: The search space @, is either discrete or contin-
uous, and the function f(x): #, — R assigns an element in R to every element
in the genotype space ®,. The optimization problem is defined by finding the
optimal solution £ = maxgca, f(x), where x is a vector of decision variables (or
alleles), and f(x) is the fitness function. The vector & is the global maximum.

When using a representation we have to introduce — in analogy to nature —
phenotypes and genotypes. Thus, the fitness function f can be decomposed into
two parts. The first maps the genotypic space @, to the phenotypic space @,
and the second maps @, to the fitness space R. Using the phenotypic space @,
we get:

fo(@g) : &9 — Py,
folzp) : @p = R,

where f = fpo fg = fp(fo(x,y)). The genotype-phenotype mapping f, is the
used representation. f, represents the fitness function and assigns a fitness value
fo(zp) to every individual x, € &,. The genetic operators are applied to the
individuals in @, that means on the level of genotypes.



2.2 An Integer Optimization Problem

This subsection defines the integer optimization problem we want to use for
our investigations. We want to define an easy problem which is defined on the
phenotypes independently of the used representation.

We assume that the fitness function f, assigns a real number to every indi-
vidual z, € N. Therefore, we get for f,:

fp(zp) :N= R

For our investigation we want to defined an integer-specific variation of the one-
max problem as

fo(zp) = p. (1)

2.3 Binary Representations of Integers

In this subsection we briefly discuss the binary and Gray encoding as examples
for binary representations of integers.

If we encode integer phenotypes using binary genotypes we have to ask why
we do not use integer genotypes for encoding integer phenotypes. In general,
instead of using binary strings with cardinality x = 2, higher y-ary alphabets
could be used for the genotypes. When using a x-ary alphabet for the genotypic
alleles, we are able to encode with one allele x different phenotypes instead of
only 2 different phenotypes when using a binary alphabet.

Binary Encoding When using the binary encoding, each integer value z, €
&, = {0,1,2,...,%pmaz} is represented by a binary string x, of length | =
log, (£p,maz)- The genotype-phenotype mapping f, is defined as z, = fy(x,)
STt 2w, , with z,; denoting the ith bit of ,.

The binary encoding has problems associated with the Hamming cliff (Schaf-
fer, Caruana, Eshelman, & Das, 1989). The Hamming cliff describes the effect
that some neighboring phenotypes (the phenotypes have a distance of one) are
represented by completely different genotypes (the distance between the geno-
types is much larger than one). The distance d between two genotypes z, and y,

is defined by using the Hamming distance as dz,,y, = Zé;é |2g.: — Yq,i| and de-
notes the number of different alleles in the two genotypes. The distance between
two phenotypes z, and y, is defined as d;,,, = |z, — yp|.

Gray Encoding To overcome problems with the Hamming cliff and the differ-
ent contribution of the alleles to the fitness of an individual when using the binary
encoding, the Gray encoding was developed (Gray, 1953; Caruana & Schaffer,
1988; Schaffer, Caruana, Eshelman, & Das, 1989). When using Gray encoding
the average contribution of an allele to the represented integer is the same for
all alleles in the bitstring.

The Gray encoded bitstring itself can be constructed in two steps. At first,
the phenotype is encoded using the binary encoding, and subsequently the binary
encoded string can be converted into the corresponding Gray encoded string. The



binary string & € {0,1}} = {z¢,21,...,2;_1} is converted to the corresponding
Gray code y € {0,1} = {yo,1,---,¥_1} by the mapping v: B — B':

)% if i = 0,
vi Ti_1 ®x; otherwise,

where @ denotes addition modulo 2. A Gray encoded string has the same length
l as a binary encoded string and the encoding is redundancy-free. Furthermore,
the representation overcomes the problems with the Hamming cliff. Every two
neighboring phenotypes (dwg,yg = 1) are encoded by neighboring genotypes
(dg,,y, = 1). This property gives Gray encoding an advantage over the binary
encoding when using mutation-based search operators (compare also subsection
4.1).

3 Performance of Crossover-based GAs using Binary
Representations

In the following we show for the integer one-max problem how the performance
of selectorecombinative GAs depends on the used representation.

3.1 Counting the Number of Binary Representations of Integers
We want to calculate the number of different genotype-phenotype mappings f,.

genotypes 000 001 010 011100 101 110 111 If we use a redundancy-

mapping free encoding the number

phenotypes 0 1 2 3 4 5 6 7 of genotypes is the same as
the number of phenotypes.
When using a binary repre-
sentation of length [ we are
able to represent 2! different phenotypes using a bitstring of length 1. Therefore,
the number of possible genotype-phenotype mappings is 2!!. The number of dif-
ferent representations is increasing exponentially with increasing I. One example
for a possible genotype-phenotype mapping is given in Figure 1.

If we use a binary representation and we encode eight different phenotypes
with a genotype of length [ = 3, there are 23! = 40 320 different representations.
Encoding 16 different phenotypes with a bitstring of | = 4 already results in
more than 10'3 different genotype-phenotype mappings. Therefore, to be able to
systematically investigate how GA’s performance depends on the used encoding
we must limit ourselves to a genotypic string length of [ = 3 and assume without
loss of generality that the phenotype z, = 0 is always assigned to the individ-
ual £, = 000. Then, the number of different genotype-phenotype mappings is
reduced to (2! —1)! = 7! = 5040. Every genotype-phenotype mapping represents
a different representation.

Fig. 1. A random genotype-phenotype mapping

3.2 Experimental Results

We present empirical results concerning the performance of selectorecombinative
GAs using different types of representations for the integer one-max problem
defined in subsection 2.2.



For our investigation we concatenate 20 integer one-max problems of size
I = 3. Each of the 20 phenotypic integers z, € {0,...,7} corresponds to 3 bits
in the genotype. Therefore, the length of a genotype is I, = 60. The fitness of
an individual is calculated as the sum over the fitness of the 20 sub-problems.
The fitness of one sub-problem is calculated according to equation 1.

For our investigation we use a selectorecombinative GA using only uniform
crossover and no mutation. For selection we use tournament selection without
replacement of size 2. The population size is set either to n = 20 (Figure 2(a))
or n = 40 (Figure 2(b)). We performed 250 runs for each of the 5040 different
genotype-phenotype mappings, and each run was stopped after the population
was fully converged. A sub-problem is correctly solved if the GA is able to find the
best solution z,, = 7. The average number of correctly solved sub-problems at the
end of the run gives us a measurement of the GA’s performance using one specific
representation. The more sub-problems can be solved correctly, the higher the
GA performance. As we limit ourselves to genotypes of length | = 3 and assign
zp = 0 always to , = 000 there are 5040 different genotype-phenotype mappings
(representations).

i
1)
=]

©
o

gray : binan

©
o

[N
o
o

~
o
—

©
o

@
o

a
o

o2}
o

IS
)

IS
o

w

o

N
o

N
o

[N
o
T

frequency (number of representations)
frequency (number of representations)

o

6 8 10 12 14 16 18 20

number of correctly solved sub-problems number of correctly solved sub-problems

(a) population size n = 20 (b) population size n = 40

Fig. 2. Experimental results of the frequency of the number of correctly solved sub-
problems at the end of a run for all possible genotype-phenotype mappings. We present
results for 20 concatenated 3-bit problems. The genotype x4, = 000 is always assigned
to the phenotype x, = 0 so there are (22 — 1)! = 5040 different possible genotype-
phenotype mappings. We use a GA with tournament selection without replacement of
size 2, uniform crossover, and no mutation. We perform 250 runs for each of the 5040
possible encodings.

Figure 2 presents the results of our experiments for the integer one-max prob-
lem. We show the distribution of the number of correctly solved sub-problems at
the end of a GA run when using different types of genotype-phenotype mappings.
The plots show results for all 5040 different genotype-phenotype mappings. The
ordinate counts the number of genotype-phenotype mappings (representations)
that allow a GA to correctly solve a certain number of sub-problems.

How can we interpret the data in Figure 2? Every bar indicates the number
of different genotype-phenotype mappings that allow a GA to correctly solve a
specific number of sub-problems. For example, the bar of height 77 at position



12.9 means that a GA correctly solves on average between 12.85 and 12.95 sub-
problems for 77 different genotype-phenotype mappings. The bar at position
17.0 means that there are only 7 (out of 5040) different genotype-phenotype
mappings that allow a GA to correctly solve on average between 16.95 and 17.05
sub-problems. The plot shows that the differences in GA performance are large
and that a GA with 20 individuals solves dependent on the used representation
between 6.5 and 17.1 sub-problems out of 20.

If we compare Figure 2(a) with Figure 2(b) we see that with increasing
population size there are still large differences in GA performance. The shapes
of the distributions are similar and are shifted with increasing population size
n towards a higher number of correctly solved sub-problems. To be able to
illustrate how the performance of GAs depends on the different representations
the population size n must be chosen relatively small. Using larger n would allow
GAs to solve all 20 sub-problems (due to the easiness of the problem) and we
would be not able to illustrate the performance differences using different types
of representations.

We see that different representations, that means assigning the genotypes
z, € {0,1}® in a different way to the phenotypes z, € {0,...7}, change the
performance of GAs. For some representations GA performance is high, whereas
for some representations GA performance is low.

4 Performance of Binary and Gray Encoding

After we have seen that GA’s performance strongly depends on the used repre-
sentation, we focus in the following on the performance of two specific represen-
tations, namely Gray and binary encoding.

When using binary representations of integers there are 2!! different genotype-
phenotype mappings. Gray and binary encoding are two specific representations.
The arrows in Figure 2 indicate the performance of selectorecombinative GAs
using these two types of encodings. A GA with n = 20 using Gray encoding
correctly solves on average only 12.9 of the 20 sub-problems whereas when using
binary encoding on average 16.2 out of the 20 sub-problems are solved. It can be
seen that GAs using binary encoding perform much better than GAs using Gray
encoding. With increasing population size n both encodings perform better but
there is still a large performance difference between both encodings.

4.1 Experimental Results

To investigate the performance differences more closely we compare in Figure 3
GA performance when using binary encoding and Gray encoding. We show the
average proportion of correctly solved sub-problems at the end of the run (Figure
3(a)) and the number of generations (Figure 3(b)) over the population size. As
before, we concatenated m = 20 sub-problems of length | = 3. Furthermore,
we use the same parameters for the GA as described in subsection 3.2 but only
change the population size n. The results confirm our previous observations and
show that selectorecombinative GAs using the binary encoding not only solve
a higher proportion of correct sub-problems but also solve the sub-problems in
shorter time.
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Fig. 3. GA performance for the integer one-max problem. Each sub-problem has length
3 and we concatenated m = 20 sub-problems. We show the average proportion of
correctly solve sub-problems at the end of a GA run (Figure 3(a)) and the average
length of a run (Figure 3(b)). GAs using the binary encoding are able to solve more sub-
problems and converge after a shorter number of generations. The error bars indicate
the standard deviation of the results.
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Fig. 4. Proportion of correctly solved sub-problems at the end of a GA run versus the
length ! of the sub-problems for the binary and Gray encoding. The plots are for the
integer one-max problem and a population size of n = 20 (Figure 4(a)) and n = 40
(Figure 4(b)). With increasing length ! the performance of GAs is reduced. When using
Gray encoding the performance of a GA declines much stronger than when using binary
encoding. The error bars indicate the standard deviation of the results.

To investigate how GA performance varies over the length of the sub-
problems we show in Figure 4 results for the proportion of correctly solved sub-
problems over the length [. The length [ of the sub-problems varies from [ = 2
to I = 10. Therefore, the number of different integers that can be represented
varies from 22 = 4 to 2!0 = 1024. As before we concatenate 20 sub-problems of
length [ and use the same GA parameters as in subsection 3.2. The length of a
genotype is Iz, = 20 x [.

GA performance declines with increasing length [ of the sub-problems. For
small problems (I = 2) GAs are able to correctly solve most of the 20 sub-
problems, whereas for large problems (I = 10) only a small fraction of sub-



problems can be solved. Comparing Gray and binary encoding shows that inde-
pendently of I GAs using binary encoding outperform GAs using Gray encoding.
With larger population size n = 40 (Figure 4(b)) GA performance increases.
However, using binary encoding still results in better GA performance.

The performance differences between Gray and binary encoding are surpris-
ing because we already noted in subsection 2.3 that the Gray encoding has no
problems with the Hamming cliff and the contribution of the alleles is uniformly.
Furthermore, other work has shown that the Gray encoding shows some advan-
tage in comparison to binary encoding. (Rana & Whitley, 1997; Whitley & Rana,
1997; Whitley, 1999). This work formulated a Free Lunch theorem for the use
of Gray encoding and mutation-based search approaches. GEAs using mutation
as the main search operator perform better when using the Gray encoding than
when using the binary encoding. The proof actually shows that the number of
local optima introduced by using the Gray encoding is smaller than when us-
ing the binary encoding. However, this proof is not in contrast to the results
herein which are obtained for selectorecombinative GAs and not for mutation-
based search algorithms. When using the Gray encoding all phenotypes with
distance d? = 1 are also neighboring genotypes (d? = 1). Therefore, when using
mutation-based search approaches and Gray encoding, a small mutation of a
genotype always results in the corresponding phenotype and the performance of
mutation-based search approaches on easy problems must be higher when using
Gray encoding.

However, in this work we focus not on mutation-based search methods but
use crossover as main search operator. Therefore, the correct method to measure
problem difficulty is to use schema analysis (Holland, 1975; Goldberg, 1989). The
performance of selectorecombinative GAs is determined by the building blocks
resulting from the used representation.

4.2 Schemata Analysis for Binary and Gray encoding

This subsection analyzes the fitness of the schemata resulting from the use of
Gray versus binary encoding. We perform a static schema analysis and do not
consider the actual schemata a GA sees during the run. The analysis of the
fitness of the schemata reveals that using binary encoding makes the integer
one-max problem easier than using Gray encoding. Therefore, the performance
of selectorecombinative GAs is higher when using binary encoding.

In Table 1, we present the average fitness of the schemata for the integer
one-max problem using binary and Gray encoding for { = 3. The numbers reveal
that for the integer one-max problem with binary encoding all schemata contain-
ing the global optimum x, = 111 are superior to their competitors. Therefore,
the integer one-max problem is easy and selectorecombinative GAs show a high
performance. The schema analysis for Gray encoding reveals that the schemata
containing the global optimum z, = 100 are not always superior to their com-
petitors. Therefore, the problem is not completely easy any more, and GAs
perform worse in comparison to using binary encoding.

The results show, that for selectorecombinative GAs some easy problems like
the presented integer one-max problem, are easier to solve when using the binary
encoding as when using the Gray encoding. When using selectorecombinative



Table 1. Schemata fitness for the integer one-max problem using binary versus Gray
encoding. The integer one-max problem is completely easy for the binary encoding.
Using Gray encoding results in a more difficult problem, because some of the high
quality schemata have the same fitness as misleading schemata.

| | order | 3 | 2 | 1 | 0 |
schema | 111 [ 11% [ 1*1 | ¥11 | **1 | ¥1% | 1% | **x
fitness | 7 [6.5| 6 5 4 4.5|5.5|3.5

o schema, 01* | 0*1 | *01 | **0 | *0* | 0**
5 | fitness 2.5 2 3 3 25|15
-_g schema 10* | 1*0 | *10

fitness 45| 5 4

schema, 00* | 0%0 | *00

fitness 05| 1 2

schema | 100 | 10* [ 1*0 | *00 | 1** | ¥0* | *¥*0 | ***
fitness | 7 |6.5|5.5|3.5|5.5/3.5|3.5|3.5

schema 11 [ 1%1 | *11 | OF* | ¥1% | *¥*1
& | fitness 45(5.5(3.5]/1.5|3.5|3.5
O | schema 01* | 0*1 | *01

fitness 251(115(3.5

schema 00* | 0*0 | *00

fitness 05|15(3.5

GAs, neither the Hamming distances between the individuals nor problems with
Hamming cliffs are relevant for GA performance, but the schema analysis answers
the question if a problem is easy or difficult.

5 Conclusions

This paper investigates how binary representations of integers influence the per-
formance of selectorecombinative GAs.

It is well known, that when using representations every optimization prob-
lem can be separated into a genotype-phenotype mapping (the used representa-
tion) and a phenotype-fitness mapping (the optimization problem that should
be solved). This paper illustrates for binary representations of integers, that the
choice of a proper genotype-phenotype mapping is crucial for GA’s success. The
use of different representations results in large differences in GA performance.

The binary and Gray encoding are two well known possible binary represen-
tations of integers. Focusing on these two representations reveals for the easy
integer one-max problem, that for selectorecombinative GAs not Hamming dis-
tances between individuals, but schemata are important. We illustrate that the
analysis of the fitness of the resulting schemata for the easy integer one-max
problem can be used for explaining the differences in performance. It reveals,
that the use of the binary encoding results in building blocks of lower order than
the use of the Gray encoding. Therefore, when using Gray encoding the integer
one-max problem is more difficult and the performance of selectorecombinative
GAs is lower.



Our empirical analysis of GA performance has shown that the binary en-
coding results in higher performance than the Gray encoding. However, Figure
2(a) reveals that there are representations that even outperform the binary en-
coding. If we can theoretically describe the properties of these encodings and
systematically construct such representations, we would be able to increase the
performance of GAs and solve integer problems more efficiently.
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